Introduction aux probabilités - TD 1

Université Paris Sciences et Lettres CPES2 Mathématiques & Physique

Exercice Préliminaire (Ensemble des suites à valeurs dans $\{0,1\}$)

Montrer que l'ensemble $\{0,1\}^{\mathbb{N}}$ des suites infinies $(x_n)_{n\in\mathbb{N}}$ à valeurs dans $\{0,1\}$ n'est pas dénombrable.

Exercice 1 (Exemple de tribu engendrée)

On considère la tribu $\mathcal{A} := \sigma(\{\{z, z+1, z+2\} : z \in \mathbb{Z}\})$ sur \mathbb{Z} . Quels sont les éléments de \mathcal{A} ?

Exercice 2 (Tribu trace)

Soient (Ω, \mathcal{A}) un espace mesurable et $\Omega' \subset \Omega$. On définit $\mathcal{A}' := \{A \cap \Omega' : A \in \mathcal{A}\}.$

- 1. Montrer que \mathcal{A}' est une tribu sur Ω' .
- 2. On suppose que $\Omega' \in \mathcal{A}$. Montrer que $\mathcal{A}' \subset \mathcal{A}$.
- 3. On suppose que $\mathcal{A} = \sigma(\mathscr{F})$ pour $\mathscr{F} \subset \mathscr{P}(\Omega)$. Montrer que $\mathcal{A}' = \mathcal{F}$, où $\mathcal{F} := \sigma(\{F \cap \Omega' : F \in \mathscr{F}\})$. On pourra procéder par double inclusion et montrer que $\Sigma := \{S \subset \Omega : S \cap \Omega' \in \mathcal{F}\}$ est une tribu sur Ω telle que $\mathcal{A} \subset \Sigma$.

Exercice 3 (Tribu image réciproque)

Soient E et F deux ensembles, F une tribu sur F et $f: E \to F$. Montrer que $\mathcal{E} := \{f^{-1}(A): A \in \mathcal{F}\}$ est une tribu sur E.

Exercice 4 (Tribu engendrée par une partition)

Soit E un ensembe non vide, $n \in \mathbb{N}^*$ et $(A_i)_{i \in \llbracket n \rrbracket}$ une partition de E. On note:

$$\mathcal{T} := \left\{ \bigcup_{i \in J} A_i : J \in \mathscr{P}(\llbracket n \rrbracket) \right\}$$

1. Montrer que $\mathcal{T} = \sigma(\{A_i : i \in [n]\})$ (on pourra commencer par montrer que \mathcal{T} est une tribu).

On suppose maintenant E infini et $(A'_i)_{i\in\mathbb{N}}$ une partition de E. Pour toute partie $J\subset\mathbb{N}$, on pose:

$$B_J := \bigcup_{j \in J} A'_j$$

On définit alors:

$$\mathcal{T}' := \{B_J : J \in \mathscr{P}(\mathbb{N})\}$$

- 2. Montrer que $\mathcal{T}' = \sigma(\{A'_i : i \in \mathbb{N}\}).$
- 3. Trouver une partition $(C_i)_{i\in\mathbb{N}}$ de \mathbb{N} telle que, pour tout $i\in\mathbb{N}$, C_i est infini.
- 4. Trouver une tribu sur ℕ dont tous les éléments sauf l'ensemble vide sont de cardinal infini.

Exercice 5 (Propriétés sur la mesure de Lebesgue des ouverts)

On rappelle qu'un ouvert de \mathbb{R} est une réunion dénombrable d'intervalles ouverts. On note λ la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

- 1. Soit U un ouvert de \mathbb{R} . Montrer que si U est borné, alors $\lambda(U) \in \mathbb{R}_+$. La réciproque est-elle vraie ?
- 2. On dit qu'une partie $E \subset \mathbb{R}$ est dense si, pour tous $\varepsilon \in \mathbb{R}_+^*$ et $x \in \mathbb{R}$, il existe $y \in E$ tel que $|y x| < \varepsilon$. Donner un exemple de partie de \mathbb{R} dénombrable et dense.
- 3. Soit $\alpha \in \mathbb{R}_+^*$. Construire un ouvert U de \mathbb{R} dense et tel que $\lambda(U) \leq \alpha$ (utiliser les réponses aux questions précédentes).
- 4. Soit $A \in \mathcal{B}(\mathbb{R})$. Montrer que si A contient un ouvert non vide, alors $\lambda(A) > 0$. La réciproque est-elle vraie?

Exercice 6 (Formule du crible de Poincaré)

1. Soient $(\Omega, \mathcal{A}, \mathbf{P})$ un espace probabilisé et $(A_n)_{n \in \mathbb{N}^*}$ une famille d'évènements. En utilisant un raisonnement par récurrence, montrer que, pour $n \geq 2$:

$$\mathbf{P}\left(\bigcup_{i\in[[n]]} A_i\right) = \sum_{k=1}^n (-1)^{k+1} \sum_{(i_1,\dots,i_k)\in\Delta_k} \mathbf{P}\left(\bigcap_{j=1}^k A_{i_j}\right)$$

où $\Delta_1 := [n]$ et, pour $k \in [2; n]$, $\Delta_k := \{(i_1, \dots, i_k) \in [n]^k : i_1 < \dots < i_k\}.$

2. Un facteur distribue aléatoirement n lettres dans n boites aux lettres. Quelle est la probabilité que personne n'ait reçu la lettre qui lui était destinée?

Indice : Considérer l'espace mesurable $(\Omega, \mathscr{P}(\Omega))$ avec Ω l'ensemble des permutations sur [n] muni de la loi uniforme, et calculer la probabilité d'obtenir une permutation sans point fixe.

Exercice 7 (Indépendance d'évènements et cardinal de l'univers)

Soient $(\Omega, \mathscr{P}(\Omega), \mathbf{P})$ un espace probabilisé fini, $n \in \mathbb{N}^*$ et $(A_k)_{k \in \llbracket n \rrbracket}$ une famille d'évènements indépendants telle que, pour $k \in \llbracket n \rrbracket$, $\mathbf{P}(A_k) \in]0,1[$.

- 1. Soient $B_1, \ldots, B_n \in \mathscr{P}(\Omega)$ tels que, pour $k \in [n]$, $B_k \in \{A_k, A_k^c\}$. Montrer que la famille $(B_k)_{k \in [n]}$ n'est pas incompatible.
- 2. Soient $B'_1, \ldots, B'_n \in \mathscr{P}(\Omega)$ tels que, pour $k \in \llbracket n \rrbracket$, $B'_k \in \{A_k, A^c_k\}$. On suppose que $(B_1, \ldots, B_n) \neq (B'_1, \ldots, B'_n)$. Montrer que les évènements $\bigcap_{k \in \llbracket n \rrbracket} B_k$ et $\bigcap_{k \in \llbracket n \rrbracket} B'_k$ sont incompatibles.
- 3. En déduire que $|\Omega| \geq 2^n$.

Exercice 8 (Fonctions monotones)

On rappelle qu'un sous-ensemble E de \mathbb{R} est dit convexe si, pour tous $x,y\in E$, $[x,y]\subset E$.

1. Soit $A \subset \mathbb{R}$ convexe. Montrer que A est un intervalle (on pourra considérer les extrema $m := \inf A \in \overline{\mathbb{R}}$ et $M := \sup A \in \overline{\mathbb{R}}$ lorsqu'ils sont bien définis).

Soit $f: \mathbb{R} \to \mathbb{R}$ monotone.

- 1. Montrer que, pour tout $c \in \mathbb{R}$, $f^{-1}(]-\infty,c[)$ est convexe.
- 2. En déduire que f est mesurable (pour la tribu borélienne).

Exercice 9 (Variable aléatoire uniforme et loi discrète)

Soient U une variable aléatoire réelle sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$ de loi $\mathcal{U}([0, 1])$ et μ une loi sur $(\mathbb{N}, \mathscr{P}(\mathbb{N}))$. Donner une fonction mesurable réelle f sur $([0, 1], \mathscr{B}([0, 1]))$ telle que f(U) a loi μ .

Exercice 10 (Propriétés de la fonction de répartition)

Soit X une variable aléatoire réelle sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$ et F_X sa fonction de répartition.

- 1. Montrer que F_X est croissante.
- 2. Montrer que $\lim_{x\to-\infty} F_X(x) = 0$ et $\lim_{x\to+\infty} F_X(x) = 1$.

On dit qu'une fonction $f: \mathbb{R} \to \mathbb{R}$ est càdlàg (continue à droite, limitée à gauche) si, pour tout $x \in \mathbb{R}$, $\lim_{\substack{r \to x \\ r < x}} f(r)$ est bien définie et $\lim_{\substack{r \to x \\ r > x}} f(r) = f(x)$.

- 3. Montrer que F_X est càdlàg.
- 4. Soit \mathbf{P}_X la loi de X et $x \in \mathbb{R}$. Montrer que x est un atome de \mathbf{P}_X ssi c'est un point de discontinuité de F_X .