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Abstract

Evaluating conditional coverage remains one of the most persistent challenges in assessing the
reliability of predictive systems. Although conformal methods can give guarantees on marginal cover-
age, no method can guarantee to produce sets with correct conditional coverage, leaving practitioners
without a clear way to interpret local deviations. To overcome sample-inefficiency and overfitting
issues of existing metrics, we cast conditional coverage estimation as a classification problem. Condi-
tional coverage is violated if and only if any classifier can achieve lower risk than the target coverage.
Through the choice of a (proper) loss function, the resulting risk difference gives a conservative
estimate of natural miscoverage measures such as L1 and L2 distance, and can even separate the
effects of over- and under-coverage, as well as handle non-constant target coverages. We call the
resulting family of metrics excess risk of the target coverage (ERT). We show experimentally that the
use of modern classifiers provides much higher statistical power than simple classifiers underlying
established metrics like CovGap. Additionally, we use our metric to benchmark different confor-
mal prediction methods. Finally, we release an open-source package for ERT as well as previous
conditional coverage metrics. Together, these contributions provide a new lens for understanding,
diagnosing, and improving the conditional reliability of predictive systems.

1 Introduction
Uncertainty quantification is central to decision-making across science, engineering, and policy. In
many applications, the goal is not a single point prediction but a set of plausible outcomes with a
desired confidence level. This is formalized by a predictive set rule 𝐶(·), which outputs a region
expected to contain the true outcome with a desired probability. Such predictive sets capture data
noise, model imperfections, and variability, supporting safer decisions and clearer communication of
model confidence.

Conformal prediction (CP) offers a general framework for constructing prediction sets with finite-
sample coverage guarantees (Vovk et al., 2005; Shafer and Vovk, 2008). Its only requirement is that the
available data samples are exchangeable: a condition even weaker than the standard independent and
identically distributed (i.i.d.) assumption. In recent years, CP has rapidly emerged as a go-to tool for
adding rigorous, model-agnostic uncertainty estimates to modern black-box predictors (Angelopoulos
and Bates, 2023). This makes it especially appealing for scientific and industrial applications where
formal guarantees on model predictions are essential.

CP’s simplicity hides an important drawback: it only guarantees marginal coverage, which means
that the constructed prediction set contains the true outcome with probability 1 − 𝛼 on average across
the population. That is, the coverage is right on average, but not necessarily for each individual. In
practice one often desires conditional coverage; i.e., asking that the coverage guarantee holds not only
on average but also for specific subpopulations or feature values.
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Achieving exact conditional coverage is impossible in general without strong distributional assump-
tions (Vovk, 2012; Lei and Wasserman, 2014; Foygel Barber et al., 2021), and even approximate versions
are notoriously difficult to deploy. Improving conditional coverage in CP typically requires carefully
designed nonconformity scores. Common strategies rely on models that provide uncertainty estimates,
such as quantile regression (Romano et al., 2019), predictive distributions (Izbicki et al., 2022; Braun
et al., 2025), or local score adjustments (Guan, 2023; Messoudi et al., 2022; Thurin et al., 2025). Recent
work proposes post hoc corrections that directly model conditional quantiles of the nonconformity score
(Plassier et al., 2025). There is, however, a difficulty in assessing whether progress is being made in
this literature, which is the lack of standard way to evaluate conditional coverage and thereby compare
algorithms. The fundamental problem of the evaluation of conditional coverage is the focus of the
current paper.

Evaluating conditional coverage is difficult. Group-based diagnostics, such as fairness-style coverage
gaps (Ding et al., 2023), require large sample sizes per group and are highly sensitive to group definitions.
Geometric scans such as worst-case slab coverage (WSC, Cauchois et al., 2021) offer a more adaptive
view but suffer from severe sample complexity in high dimensions. Dependence-based diagnostics
(Feldman et al., 2021) capture correlations between coverage and auxiliary variables but do not provide
a standalone notion of conditional validity. In short, there is still no robust, general-purpose metric for
assessing conditional coverage in practice.

Contributions. We address this gap by reframing conditional coverage evaluation as a supervised
prediction task: given features 𝑋 ∈ 𝒳 , predict whether the label 𝑌 ∈ 𝒴 falls inside the predictive set
𝐶𝛼(𝑋), where (𝑋, 𝑌 ) ∼ P𝑋,𝑌 . Under perfect conditional coverage, for any proper loss ℓ the Bayes-
optimal predictor, ℎ : 𝒳 → 𝒴, which is defined as the minimizer of the risk E[ℓ(ℎ(𝑋),1{𝑌 ∈ 𝐶𝛼(𝑋)}]
is the constant 1 − 𝛼. Consequently, any predictor that consistently outperforms this constant directly
exposes a violation of conditional coverage. Building on this insight, we introduce the excess risk of the
target coverage (ℓ-ERT) metric to quantify deviations from conditional validity. Our metric provides an
estimate of E𝑋 [𝐷𝜙(𝑝(𝑋)‖1−𝛼)] where 𝐷𝜙 is the Bregman divergence of a convex function 𝜙 (Bregman,
1967). For instance, we can reliably estimate the quantity E[ |1 − 𝛼 − P(𝑌 ∈ 𝐶𝛼(𝑋)|𝑋)| ].

To contextualize our contribution, we establish a formal connection between existing group-based
diagnostics and our metrics, showing that our formulation generalizes partition-based estimators to
arbitrary predictor classes. This unified perspective unlocks the full potential of functional estimation,
integrating both parametric and nonparametric approaches to assess conditional coverage, moving
beyond heuristic group evaluations toward principled, model-based inference.

Through experiments, we demonstrate that our proposed conditional coverage metrics are empir-
ically more robust, that is, less prone to misleading diagnostics, than existing alternatives. Finally,
we benchmark several conformal prediction methods on real-world regression and classification tasks
to compare their conditional coverage performance. To support reproducibility and to catalyze fur-
ther progress in conformal prediction, we release covmetrics1, an open-source package for evaluating
conditional coverage using our approach alongside established metrics.

Overall, this work casts conditional coverage evaluation as a key missing piece for practical conformal
prediction, and offers new tools to fill the gap.

Background on conformal prediction. We begin with a brief overview of split conformal predic-
tion, a widely used and computationally simple approach for constructing prediction sets with marginal
validity guarantees (Papadopoulos et al., 2002; Lei et al., 2018; Angelopoulos and Bates, 2023). Sup-
pose we observe data 𝒟 = {(𝑋𝑖, 𝑌𝑖)}𝑛

𝑖=1 sampled i.i.d. from a joint distribution P𝑋,𝑌 , where 𝑋𝑖 ∈ 𝒳
are feature vectors and 𝑌𝑖 ∈ 𝒴 are outcomes. For a new test pair, (𝑋test, 𝑌test), the aim is to form a
predictive set 𝐶𝛼(𝑋test) such that

P𝑋,𝑌 (𝑌test ∈ 𝐶𝛼(𝑋test)) = 1 − 𝛼.

To achieve this, the dataset is randomly divided into two parts: a training set 𝒟1 of size 𝑛1 and a
calibration set 𝒟2 of size 𝑛2. A predictive model is fit on 𝒟1, while 𝒟2 is reserved for calibrating the

1https://github.com/ElSacho/covmetrics
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prediction sets. Central to the procedure is a nonconformity score 𝑆(𝑋, 𝑌 ) ∈ R, which quantifies how
atypical a candidate response 𝑌 is relative to the model. Using these scores, the predictive sets are
then computed as:

𝐶𝛼(𝑋test) = {𝑦 : 𝑆(𝑋test, 𝑦) ≤ 𝑞𝛼} , (1)

with
𝑞𝛼 := 𝑄1−𝛼

(︃
1

𝑛2 + 1

𝑛2∑︁
𝑘=1

𝛿𝑆(𝑋𝑘,𝑌𝑘) + 𝛿∞
𝑛2 + 1

)︃
, (2)

where 𝑄1−𝛼(P) returns the 1 − 𝛼 quantile of the distribution P, and 𝛿𝑥 is the Dirac measure centered
at 𝑥. By the exchangeability of the data, this construction guarantees the marginal coverage property:

P𝑋,𝑌 (𝑌test ∈ 𝐶𝛼(𝑋test) | 𝒟1) ∈
[︃
1 − 𝛼, 1 − 𝛼 +

1
𝑛2 + 1

)︃
.

It is important to note that the guarantee in Eq. (1) is marginal, which means that coverage holds
on average over the distribution of 𝑋test and 𝒟2. A stronger requirement is conditional coverage, which
demands

P𝑌 |𝑋(𝑌test ∈ 𝐶𝛼(𝑋test) | 𝑋test) = 1 − 𝛼, (3)

for almost every 𝑋test, but achieving (3) is impossible in general without additional assumptions. For
a given conformal prediction strategy that achieves marginal coverage (1), it is essential to be able to
measure how close from a conditional guarantee (3) we are.

Notation. We denote by 1𝑥∈𝐴 the indicator function, equal to 1 if 𝑥 ∈ 𝐴 and to 0 if 𝑥 /∈ 𝐴, for some
set 𝐴. We denote by sgn(𝑥) the function that returns the sign of 𝑥 ∈ R, where sgn(0) = 0. We write
Δ𝑑 :=

{︁
𝑝 ∈ R𝑑

⃒⃒⃒
𝑝𝑖 ≥ 0 ∀𝑖 = 1, . . . , 𝑑,

∑︀𝑑
𝑖=1 𝑝𝑖 = 1

}︁
to denote the probability simplex.

2 Related Work on Evaluating Conditional Coverage
In the following, we assume that a predictive model has already been trained to produce a predictive
set rule 𝐶𝛼(·) for the output variable 𝑌 ∈ 𝒴, given a feature vector 𝑋 ∈ 𝒳 . We are given a test dataset,
𝒟test = {(𝑋𝑖, 𝑌𝑖)}𝑚

𝑖=1, to evaluate the conditional coverage of this predictive strategy. The test samples
are assumed to be sampled i.i.d. from the distribution P𝑋,𝑌 and unseen during training.

Group-based diagnostics. A common way to study conditional coverage for a predictive set 𝐶𝛼(·)
is to evaluate coverage over subpopulations or other partitions of the data. To make this concrete, fix
a finite set of groups 𝒢 and a mapping 𝑔 : 𝒳 → 𝒢 that assigns each feature 𝑥 ∈ 𝒳 , to a group 𝑔(𝑥) ∈ 𝒢.
For a given group g ∈ 𝒢 and a test sample with indices ℐg = {𝑖 : 𝑔(𝑋𝑖) = g}, the empirical coverage in
group g is

𝐶g = 1
|ℐg|

∑︁
𝑖∈ℐg

1{𝑌𝑖 ∈ 𝐶𝛼(𝑋𝑖)}.

We review several strategies for defining these groups in Appendix A. Unless stated otherwise, in the
following, the groups are obtained by clustering the feature space using the k-means algorithm. Below
we review strategies that use such groupings to diagnose conditional miscoverage.

• Coverage gap (CovGap). This measure the average absolute deviation from the target coverage
across groups,

CovGap = 1
|𝒢|

∑︁
g∈𝒢

⃒⃒
𝐶g − (1 − 𝛼)

⃒⃒
.

This metric is one of the most commonly used metrics in the literature (see, e.g, Ding et al. 2023;
Kaur et al. 2025; Zhu et al. 2025; Fillioux et al. 2024; Liu et al. 2025). A problem is that CovGap
requires a large number of samples within each group to be consistent.
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• Weighted coverage gap (WCovGap). To connect CovGap to our main metrics, we introduce
its corrected version that assigns a weight to each group’s coverage gap:

WCovGap =
∑︁
g∈𝒢

|ℐg|
𝑚

⃒⃒
𝐶g − (1 − 𝛼)

⃒⃒
.

This formulation highlights that this metric can be interpreted as nonparametric estimators of
the quantity,

L1-Miscoverage := E𝑋

[︀ ⃒⃒
P𝑌 |𝑋(𝑌 ∈ 𝐶𝛼(𝑋) | 𝑋) − (1 − 𝛼)

⃒⃒ ]︀
.

Indeed, CovGap(𝑋) := 𝐶𝑔(𝑋) is an estimate of P(𝑌 ∈ 𝐶𝛼(𝑋) | 𝑔(𝑋) = g), and |ℐg|
𝑚 an estimate

of P𝑋(𝑔(𝑋) = g). Under standard regularity assumptions, specifically, if the partition 𝒢 becomes
increasingly fine (i.e., the number of groups tends to infinity while their diameters shrink to
zero) and if ℎ*(𝑋) := E[1𝑌 ∈𝐶𝛼(𝑋) | 𝑋] is Lipschitz-continuous, then the groupwise coverage 𝐶g
converges to the true conditional coverage P𝑌 |𝑋(𝑌 ∈ 𝐶𝛼(𝑋) | 𝑋) (see, e.g, Györfi et al. 2005;
Bach 2024). Consequently, the weighted CovGap (WCovGap) metric provides a nonparametric
estimate of the stated quantity. If the groups are balanced in size, the metric CovGap admits the
same type of probabilistic interpretation.
This observation is central to understanding the positioning of our work: previous strategies can
be seen as partition-wise estimators of conditional coverage. In contrast, our approach leverages
modern classifiers to obtain a more accurate estimation of conditional coverage.

Worst-case slab diagnostic. Rather than pre-specified groups, some diagnostics scan geometric
slices of the feature space, if 𝒳 ⊂ R𝑑. This strategy is commonly refer to as the worst-case slab
coverage (WSC, Cauchois et al., 2021).

• Worst-case slab coverage (WSC). For a direction 𝑣 ∈ R𝑑 and scalars 𝑎 < 𝑏, define the slab

𝑆𝑣,𝑎,𝑏 := {𝑥 ∈ R𝑑 : 𝑎 ≤ 𝑣⊤𝑥 ≤ 𝑏}.

For a mass threshold 𝛿 ∈ (0, 1] let ℐ𝑣,𝑎,𝑏 = {𝑖 : 𝑋𝑖 ∈ 𝑆𝑣,𝑎,𝑏}. The empirical WSC in direction 𝑣 is

WSC𝑛
(︀
𝐶𝛼(·), 𝑣

)︀
:= inf

𝑎<𝑏

⎧⎨⎩ 1
|ℐ𝑣,𝑎,𝑏|

∑︁
𝑖∈ℐ𝑣,𝑎,𝑏

1{𝑌𝑖 ∈ 𝐶𝛼(𝑋𝑖)}

⃒⃒⃒⃒
⃒⃒ |ℐ𝑣,𝑎,𝑏|

𝑛
≥ 𝛿

⎫⎬⎭ .

In practice, the induced metric requires a finite set of directions 𝑉 and computes:

WSC = inf
𝑣∈𝑉

WSC𝑛
(︀
𝐶𝛼(·), 𝑣

)︀
.

This set is typically generated by sampling vectors at random from R𝑑. When evaluating over a
finite set of directions 𝑉 , WSC uniformly approximates the population slab-coverage with high
probability; the approximation error depends on the VC dimension (Vapnik, 2000) of the class
of slabs induced by 𝑉 . However, under conditional coverage, without sufficient test data WSC
tends to provide a pessimist estimate of the conditional coverage violation by overfitting the test
set by isolating miscovered points. Furthermore, this strategy does not adapt well to categorical
data.

In Appendix A we review additional metrics. One of them is feature-stratified coverage (FSC),
a group-based metric that reports the group with the worst coverage. This metric often appears in
fairness-related work (see e.g, Angelopoulos and Bates 2023; Ding et al. 2023; Jung et al. 2023). Several
grouping strategies besides categorical attributes or clustering have also been studied. For example,
equal opportunity of coverage (EOC) (Wang et al., 2023) forms groups based on the output, and size-
stratified coverage (SSC) (Angelopoulos et al., 2021) groups examples by the size of the prediction set.
Another approach is to avoid explicit grouping and instead measure statistical dependence between the
coverage indicator 𝑍 := 1{𝑌 ∈ 𝐶𝛼(𝑋)} and the prediction-set size. Feldman et al. (2021) introduced
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two such dependence measures based on Pearson’s correlation and the Hilbert–Schmidt independence
criterion (HSIC).

Each diagnostic has strengths and limitations. Group-based metrics (CovGap, FSC, EOC, SSC)
are intuitive and directly tied to fairness-style guarantees, but their statistical power depends strongly
on the choice of groups and on having enough data per group. Geometric scans like WSC explore
slices of 𝒳 without pre-specified semantic groups but suffer from the complexity of the feature space.
Representation-based measures (Pearson, HSIC) provide complementary, model-driven checks for de-
pendence between coverage and auxiliary signals, but low dependence does not prove full conditional
coverage. A central challenge in catalyzing research progress in conformal prediction is the lack of
reliable ways to assess conditional coverage empirically. Although many recent methods are designed
to improve conditional coverage (Gibbs et al., 2025; Ding et al., 2023; Kaur et al., 2025; Plassier et al.,
2025), existing guarantees are largely theoretical, and robust practical metrics remain elusive.

3 Evaluating Conditional Coverage
We would like the conditional coverage

𝑝(𝑥) := P(𝑌 ∈ 𝐶𝛼(𝑋) | 𝑋 = 𝑥),

to be equal to 1 − 𝛼 P𝑋 -almost surely. Introducing the binary random variable 𝑍 = 1{𝑌 ∈ 𝐶𝛼(𝑋)},
we can rewrite

𝑝(𝑥) = P(𝑍 = 1|𝑋 = 𝑥).
Estimating P(𝑍 = 1|𝑋 = 𝑥) is a binary classification problem, as we have access to a dataset of
pairs (𝑋𝑖, 𝑍𝑖). Some metrics such as CovGap or WSC implicitly learn classifiers based on histograms or
slabs. However, these methods are rarely used for classification due to their poor practical performance.
Explicitly reformulating conditional miscoverage estimation as a classification problem allows us to
leverage strong and practically proven classifiers. Once a classifier ℎ : 𝒳 → [0, 1] is trained, we still
need to use it to assess conditional miscoverage. The key idea is that under conditional coverage, given
a proper score ℓ, no classifier can achieve a lower risk than the constant predictor 1−𝛼. If we can learn
a predictor that performs better, then conditional coverage does not hold. This leads to a metric with
theoretical guarantees and a clear interpretation. In particular, our metric is a conservative estimate of
E[𝑑(1−𝛼, 𝑝(𝑋))] for any 𝑑 : [0, 1]× [0, 1] → R such that for all 𝑝 ∈ [0, 1], 𝑑(𝑝, ·) is convex and minimized
at 𝑝.

3.1 Excess risk of the target coverage (ERT)

For a given classifier ℎ and loss function ℓ, the associated risk is defined as

ℛℓ(ℎ) := E𝑋,𝑍 [ℓ(ℎ(𝑋), 𝑍)].

The Bayes predictor in this task is (see, e.g., Devroye et al. 2013):

ℎ*(𝑥) ∈ argmin
𝑞∈[0,1]

E[ℓ(𝑞, 𝑍) | 𝑋 = 𝑥].

If the loss ℓ is a proper loss (see, e.g, Gneiting and Raftery 2007; Bröcker 2009), then it is optimal to
predict the true probability ℎ*(𝑋) = E[𝑍|𝑋] = 𝑝(𝑋) P𝑋 -almost surely. If conditional coverage holds,
we get ℎ*(𝑋) = E[𝑍|𝑋] = 1 − 𝛼 P𝑋 -almost surely, so no classifier can achieve lower risk than the
constant 1 − 𝛼 prediction. Proper losses include the Brier score, ℓ(𝑝, 𝑦) = (𝑝 − 𝑦)2, and the log-loss
score, ℓ(𝑝, 𝑦) = −𝑦 log 𝑝 − (1 − 𝑦) log(1 − 𝑝), where 𝑝 ∈ [0, 1] denotes the predicted probability of the
event occurring and 𝑦 ∈ {0, 1} denotes the observed outcome.

This motivates the excess risk of the target coverage (ℓ-ERT). For a general proper loss ℓ, we define

ℓ-ERT := ℛℓ(1 − 𝛼) − ℛℓ(𝑝).

Larger values of ℓ-ERT correspond to greater violations of conditional coverage.
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Interpretation and examples. ERT has a probabilistic interpretation. Indeed,

ℓ-ERT = ℛℓ(1 − 𝛼) − ℛℓ(𝑝)
= E𝑋,𝑍 [ℓ(1 − 𝛼, 𝑍) − ℓ(𝑝(𝑋), 𝑍)]
= E𝑋 [E𝑍 [ℓ(1 − 𝛼, 𝑍) − ℓ(𝑝(𝑋), 𝑍)|𝑋]]
= E𝑋 [𝑑ℓ(1 − 𝛼, 𝑝(𝑋))],

where 𝑑ℓ(𝑝, 𝑞) := E𝑦∼𝑞[ℓ(𝑝, 𝑦) − ℓ(𝑞, 𝑦)] is the divergence associated with the proper score ℓ (see, e.g,
Bröcker 2009). We summarize the ℓ-ERT scores for different proper scores in Table 1.

Name Proper score ℓ(𝑝, 𝑦) ℓ-ERT formula

𝐿1-ERT sgn(𝑝 − (1 − 𝛼))(1 − 𝛼 − 𝑦) E𝑋 [|1 − 𝛼 − 𝑝(𝑋)|]
𝐿2-ERT Brier score: (𝑦 − 𝑝)2 E𝑋 [(1 − 𝛼 − 𝑝(𝑋))2]
KL-ERT Log-loss: − log 𝑝𝑦 E𝑋 [𝐷KL(𝑝(𝑋)‖1 − 𝛼)]

Table 1: Examples of proper scoring rules and their associated ERT scores.

We will show in Section 3.2 that a general class of convex distances can be estimated via ERTs.

Estimation from finite samples. Since 𝑝(𝑋) is unknown in practice, we define the functional

ℓ-ERT(ℎ) := ℛℓ(1 − 𝛼) − ℛℓ(ℎ), (4)

This metric quantifies how much better a predictor ℎ performs relative to the constant baseline 1 − 𝛼.
While we cannot guarantee that the learned predictor ℎ coincides with the Bayes-optimal predictor ℎ*,
our procedure always provides a lower bound on the true ℓ-ERT, that is for all measurable classifiers,

ℓ-ERT(ℎ) ≤ ℓ-ERT.

Therefore, it suffices to find an ℎ that performs better than the constant 1 − 𝛼 to conclude that
conditional coverage is not achieved, and use ℓ-ERT(ℎ) to lower-bound E[𝑑ℓ(1 − 𝛼, 𝑝(𝑋))].

To estimate ℓ-ERT(ℎ), we can evaluate their empirical risks that is

ℓ̂-ERT(ℎ) = 1
𝑚

𝑚∑︁
𝑖=1

[︀
ℓ(1 − 𝛼, 𝑍𝑖) − ℓ(ℎ(𝑋𝑖), 𝑍𝑖)

]︀
.

To avoid overfitting and misleading diagnostics, we cannot train ℎ on the values 𝑋𝑖 that it is
evaluated on. In general, cross-validation can be used for this purpose, where multiple classifiers are
trained on different subsets of the data, such that each data point can be evaluated using a classifier that
was not trained on it. For random forest, we can use out-of-bag predictions. The resulting algorithm
for evaluating conditional coverage using 𝑘-fold cross-validation is summarized in Algorithm 1.

Figure 1 illustrates the usefulness of our metric by showing prediction sets produced under different
conformal strategies together with their estimated conditional coverage. The function ℎ is estimated
with a neural network that has two hidden layers of width 64. In the first strategy, which applies a non
conditional conformal method, the prediction sets fail to reflect local variations in conditional miscov-
erage. This leads to large estimated ERT values, with 𝐿1-ERT(ℎ) ≈ 0.0757 and 𝐿2-ERT(ℎ) ≈ 0.0073.
In the second strategy, where prediction sets are closer to satisfying conditional coverage, the esti-
mator ℎ identifies coverage levels near 1 − 𝛼. The resulting ERT values are closer to zero, with
𝐿1-ERT(ℎ) ≈ 0.0148 and 𝐿2-ERT(ℎ) ≈ −0.00002, which signals improved conditional behavior.

We also compare our functional estimator ℎ to the partition based nonparametric estimator CovGap(𝑋).
In one dimension, the feature space is simple to cluster and the partition-based approach can approx-
imate 𝑝 well. This advantage does not persist as the feature dimension grows, a point that will be
demonstrated in Section 4.
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Algorithm 1 Compute ℓ̂-ERT.
Require: Data {(𝑋𝑖, 𝑍𝑖)}𝑚

𝑖=1, number of folds 𝑘 ≥ 2, proper score ℓ, level 𝛼, classification method.
1: Partition the data: Randomly divide {1, . . . , 𝑚} into 𝑘 approx. equal-sized folds {ℐ1, . . . , ℐ𝑘}.
2: for 𝑗 = 1 to 𝑘 do
3: Define folds: ℐ(𝑗)

val = ℐ𝑗 , ℐ(𝑗)
tr = {1, . . . , 𝑚} ∖ ℐ𝑗 .

4: Train classifier: Fit a classifier ℎ(𝑗) on {(𝑋𝑖, 𝑍𝑖) | 𝑖 ∈ ℐ(𝑗)
tr } using the specified method.

5: Evaluate on validation fold: For each 𝑖 ∈ ℐ(𝑗)
val , compute

ℓ̂-ERT
(𝑗)

=
1

|ℐ(𝑗)
val |

∑︁
𝑖∈ℐ(𝑗)

val

ℓ(1 − 𝛼, 𝑍𝑖) − ℓ(ℎ(𝑗)(𝑋𝑖), 𝑍𝑖).

6: end for

7: Aggregate across folds: ℓ̂-ERT =
1
𝑘

𝑘∑︁
𝑗=1

ℓ̂-ERT
(𝑗)

.
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Figure 1: Illustration of conditional coverage estimation. The top panel shows data generated from
𝑌 ∼ 𝒩 (𝑓(𝑋), 𝜎(𝑋)), 𝑋 ∼ 𝒰([−1, 1]) with 𝑓(𝑥) = 3 sin(𝑥) + 𝑒𝑥 and 𝜎(𝑥) = 1/2 + |𝑥| + 𝑥2, and their
predictive sets. The bottom panel shows the conditional coverage estimation ℎ used to estimate the
𝐿2-ERT(ℎ), conditional coverage estimation induced by a partition-wise estimator, true conditional
coverage, and desired 1 − 𝛼 conditional coverage. Left: Conformal sets from the score 𝑆(𝑋, 𝑌 ) =
|𝑌 −𝑓(𝑋)|. Right: Conformal sets by fitting quantiles 𝛼/2 and 1−𝛼/2 of P𝑌 |𝑋 following the procedure
in Romano et al. (2019).

3.2 Estimating general distances

Previously, Table 1 illustrated that specific choices of the proper loss ℓ can recover common dis-
tance functions. However, we can go much beyond that and estimate any convex distance function
𝑓(𝑞) = 𝑑(1 − 𝛼, 𝑞) using an ERT, as long as the proper score ℓ is allowed to depend on 𝑓 and therefore
the coverage 1 − 𝛼 itself. The following proposition formalizes this statement.

Proposition 3.1 (Representing convex losses as ERTs). Let 𝑓 : [0, 1] → R≥0 be convex with 𝑓(1 − 𝛼) = 0.
Let 𝑓 ′ be a subderivative of 𝑓 satisfying 𝑓 ′(1 − 𝛼) = 0. Then, the function

ℓ(𝑝, 𝑦) := ℓ𝑓,𝑓 ′(𝑝, 𝑦) := −𝑓(𝑝) − (𝑦 − 𝑝)𝑓 ′(𝑝) (𝑝 ∈ [0, 1], 𝑦 ∈ {0, 1})
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is a proper score satisfying

ℓ-ERT = E𝑋 [𝑓(𝑝(𝑋))] .

Proof. First, ℓ is a proper score because for all 𝑝, 𝑞 ∈ [0, 1], convexity of 𝑓 yields

E𝑦∼𝑞[ℓ(𝑝, 𝑦)] = −𝑓(𝑝) − (𝑞 − 𝑝)𝑓 ′(𝑝) ≥ −𝑓(𝑞) = E𝑦∼𝑞[ℓ(𝑞, 𝑦)] .

Since we assumed 𝑓 ′(1 − 𝛼) = 0, we have ℓ(1 − 𝛼, 𝑍) = −𝑓(1 − 𝛼) = 0. Hence,

E𝑍∼𝑝[ℓ(1 − 𝛼, 𝑍) − ℓ(𝑝, 𝑍)] = E𝑍∼𝑝[−ℓ(𝑝, 𝑍)] = 𝑓(𝑝) + (𝑝 − 𝑝)𝑓 ′(𝑝) = 𝑓(𝑝) .

Taking the expectation over 𝑋 yields the claim.

A related formulation in Section B shows that ERT can estimate 𝑑 if it is a Bregman divergence of
convex functions.

3.3 Separating over-coverage and under-coverage

Theorem 3.1 implies that we can estimate asymmetric distance measures to gain more insights on
the nature of miscoverage. In particular, one can decompose the convex function 𝑓 from above as
𝑓 = 𝑓+ + 𝑓− with an over-coverage part 𝑓+(𝑝) := 𝑓(max{𝑝, 1 − 𝛼}) that only penalizes the case
𝑝 > 1 − 𝛼 and an under-coverage part 𝑓−(𝑝) = 𝑓(min{𝑝, 1 − 𝛼}) that only penalizes 𝑝 < 1 − 𝛼.
Correspondingly, one can decompose the proper loss ℓ and the ERT as

ℓ(𝑝, 𝑦) = ℓ+(𝑝, 𝑦) + ℓ−(𝑝, 𝑦) − ℓ(1 − 𝛼, 𝑦)
ℓ-ERT = ℓ+-ERT + ℓ−-ERT

ℓ+(𝑝, 𝑦) := ℓ(max{𝑝, 1 − 𝛼}, 𝑦)
ℓ−(𝑝, 𝑦) := ℓ(min{𝑝, 1 − 𝛼}, 𝑦) .

Together, ℓ+-ERT and ℓ−-ERT provide a decomposition of conditional coverage error into two
complementary components. The first identifies unnecessary conservatism, while the second highlights
locations where the procedure is too aggressive and exhibits under-coverage. This split view delivers
more informative diagnostics and supports targeted improvements in the design of conformal prediction
methods.

3.4 Extensions

A proxy for conditional coverage. The learned predictor ℎ can also be used as a proxy for
conditional coverage. For a given test point 𝑋test, its conditional coverage can be estimated as

ℎ(𝑋test) ≈ P
(︀
𝑌test ∈ 𝐶𝛼(𝑋test) | 𝑋test

)︀
.

This approximation provides a corrective proxy for conditional coverage: rather than modifying the
predictive set 𝐶𝛼(𝑋test), we adjust its predicted coverage level from 1 − 𝛼 to ℎ(𝑋test).

Evaluating conditional coverage rules. We further extend our metric to settings where the tar-
get conditional coverage is not fixed at 1 − 𝛼, but instead varies according to a specified decision rule.
This extension, detailed in Appendix D, enables testing whether a given strategy satisfies conditional
coverage with respect to adaptive or context-dependent coverage levels.

4 Experiments
Our package covmetrics2 and the code for all our experiments3 is accessible and reproducible from
GitHub.

2https://github.com/ElSacho/covmetrics
3https://github.com/ElSacho/Conditional_Coverage_Estimation
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4.1 Comparing different classifiers

The quality of the ERT estimation hinges on the choice of a good classifier, which depends on the
data type of 𝑋. We will restrict our experiments to the case where 𝑋 is a fixed-dimensional vector of
numerical and/or categorical features, also known as tabular data. For other modalities like images or
text, tabular classifiers could be used on top of embeddings of 𝑋 to keep the training fast. As we want
our metric to be reasonably fast to compute, we are particularly interested in finding fast classifiers.
For this reason, we do not tune the hyperparameters of the classifiers. Based on recent benchmarks
(Erickson et al., 2025; Holzmüller et al., 2024), we choose a subselection of classifiers that are promising
in terms of their speed-accuracy trade-off. We provide more details on those classifiers in Appendix F.
We note that our results show performances of specific configurations, but other trade-offs can also be
achieved.

We begin by examining how various classifiers perform when estimating the conditional coverage
quantity. This is achieved by comparing how well different tabular classifiers estimate the conditional
miscoverage. We review those classifiers in Appendix F. To pursue this, we select the four largest regres-
sion datasets in TabArena (Erickson et al., 2025). Each dataset is divided into three parts; a training
set (with 40% of the data) used to learn a predictor 𝑓 that minimizes the empirical mean squared error.
A calibration set (with 10% of the data) used with the nonconformity score 𝑆(𝑋, 𝑌 ) = |𝑌 − 𝑓(𝑋)| to
construct the set rule 𝐶𝛼(·) with 1−𝛼 = 0.9 such that when the residual distribution is heteroskedastic,
these sets are not expected to be conditional. A test set (with 50% of the data) used to evaluate the
𝐿1-ERT, 𝐿2-ERT and KL-ERT metrics, performing 5-fold cross-validation.

We compare the estimated metric values as a function of the number of test samples and average
all results over ten runs. Since our estimator gives a lower bound on the true ℓ-ERT value, a larger
estimate indicates a stronger classifier. In Table 2 we report the average percentage improvement over
the best strategy, averaged across all test sample sizes and all datasets, as well as the average time
required to estimate our metrics per 1,000 samples. Because averaging can hide important effects, we
also report results for each dataset as a function of the number of test samples in Figures 2 and 3.

Classifier Avg. % of max ERT Avg. time per
1K samples [s] Device

𝐿1-ERT 𝐿2-ERT KL-ERT
TabICLv1.1 71.91.9 55.42.7 60.21.8 5.10.7 GPU
RealTabPFN-2.5 71.61.7 55.72.5 59.71.9 5.20.7 GPU
CatBoost 68.72.8 50.82.7 55.22.1 18.74.5 CPU
LightGBM (medium) 68.42.2 49.92.5 53.61.7 2.60.3 CPU
ExtraTrees 65.92.4 30.53.2 0.00.0 2.10.4 CPU
RandomForest 65.92.8 35.72.5 0.00.0 2.70.5 CPU
PartitionWise 38.31.9 14.11.1 1.70.9 0.20.0 CPU

Table 2: ERT recovered by different methods, relative to the highest value among all methods and
number of samples, averaged over all number of test samples and datasets. Experiments are repeated
10 times, and the index number is the standard deviation across those 10 experiments.

Results. As shown in Table 2, the tabular foundation models TabICLv1.1 (Qu et al., 2025) and
RealTabPFN-2.5 (Grinsztajn et al., 2025) show excellent performance across different metrics. However,
they can be very slow without a GPU, and they are generally only usable up to a certain size of datasets
(around 100K samples). Gradient-boosted decision trees like CatBoost (Prokhorenkova et al., 2018)
and LightGBM (Ke et al., 2017) are closely behind, but they do facilitate fast training on CPUs
and are scalable to large datasets. In particular, LightGBM with the relatively cheap configuration
from Holzmüller et al. (2024) excels through its training speed while still recovering large ERT values.
Therefore, we suggest LightGBM as the default classifier to use with ERT. Random Forest (Breiman,
2001) and ExtraTrees (Geurts et al., 2006) are also fast but exhibit worse results, particularly for the
KL-ERT, which heavily penalizes overconfidence, and the 𝐿2-ERT. PartitionWise, the strategy used
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for CovGap, is fastest but performs much worse than the other classifiers. Figures 2 and 3 show that
on two out of four datasets, PartitionWise detects almost no miscoverage. Overall, our results suggest
that results of tabular classification benchmarks transfer approximately to the task of ERT estimation.

Differences between metrics. Table 2 also shows that the 𝐿1-ERT is considerably easier to estimate
than the 𝐿2-ERT and KL-ERT. Indeed, for the 𝐿1-ERT, the classifiers only need to predict on the right
side of 1 − 𝛼 to be optimal, whereas for the others they need to predict the exact probability. Hence,
we recommend using the 𝐿1-ERT as the default metric.
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Figure 2: Illustration of the estimation of 𝐿1-ERT for different classifiers as a number of sampled data
available. Left: physiochemical_protein dataset. Right: Diamonds dataset.
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Figure 3: Illustration of the estimation of 𝐿1-ERT for different classifiers as a number of sampled data
available. Legend shared with Figure 2. Left: Food_Delivery_Time dataset. Right: Superconduc-
tivity dataset.

4.2 Comparison with existing metrics

We illustrate that existing methods can fail to accurately assess conditional coverage in scenarios where
our approach succeeds. To this end, we generate a synthetic dataset following

𝑌 ∼ 𝒩
(︀
0, 𝜎(𝑋1)

)︀
, with 𝑋 ∼ 𝒰([−1, 1]8),

where 𝑋1 is the first component of the vector 𝑋.
Prediction sets are constructed using two different strategies:

• Standard CP: Using the nonconformity score 𝑆(𝑋, 𝑌 ) = |𝑌 | within the standard conformal
prediction framework using 3,000 i.i.d. samples.
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• Oracle sets: Using the ground-truth oracle that provides the true conditional quantiles 𝛼/2 and
1 − 𝛼/2 of the underlying distribution.

The first strategy produces marginally valid but conditionally invalid prediction sets, while the
second produces conditional sets by construction.

The first experiment evaluates how many test points are needed to obtain reliable estimates for
commonly used metrics (CovGap, WSC) compared to our proposed metrics. We measure each metric
as a function of the number of test points on a log scale, computing 𝐿1-ERT and 𝐿2-ERT respectively
estimating E𝑋 [|1 − 𝛼 − 𝑝(𝑋)|] and E𝑋 [(1 − 𝛼 − 𝑝(𝑋))2] using 5-fold cross-validation, and show the
results in Figure 4.

Results. The results are striking: group-based metrics are extremely unaligned with their theoretical
values and require large sample sizes to converge. Even with 5,000 points, they provide nearly identical
diagnostics across these two very different scenarios, and WSC exhibits similar instability. By contrast,
our metrics adapt rapidly. In particular, 𝐿1-ERT stabilizes very quickly, providing reliable estimates
of conditional coverage deviation in the naive scenario. 𝐿2-ERT needs more samples to converge to its
true value but already diagnoses conditional coverage failure with few samples. This is not surprising
as, as explained earlier, the 𝐿1 version only requires that the sign of ℎ(𝑋) − (1 − 𝛼) matches the sign of
𝑝(𝑋)− (1−𝛼), whereas the 𝐿2 version instead depends on the closeness of ℎ(𝑋) to the true conditional
probability itself, which typically requires more data.

In the scenario with perfect conditional coverage, all of our proposed metrics converge rapidly to
values indicating no failure, while WSC continues to struggle even with 50,000 samples. These results
demonstrate that our methods not only provide more accurate diagnostics but also require far fewer
samples to detect conditional coverage deviations reliably.
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Figure 4: Estimated metrics as a number of test samples points. Top figure: WSC. Middle figure:
CovGap & 𝐿1-ERT. Bottom axis: 𝐿2-ERT Left: Standard CP not conditional. Right: Oracle sets
conditional. Theoretical values are estimated using the true value P(𝑌 ∈ 𝐶𝛼(𝑋)|𝑋) for 300, 000 samples
of P𝑋 .

Figure 5 visualizes the data distribution and the induced prediction sets for both strategies with
test dataset of size 1, 500. Precise metrics values are reported in Table 3. Since only the first feature
is informative, we plot (𝑋1, 𝑌 ) while ignoring the remaining features, and we also show (𝑋1, ℎ(𝑋))
to illustrate our estimator’s learned conditional coverage, as well as (𝑋1, 𝐶𝑜𝑣𝐺𝑎𝑝(𝑋)) to illustrate the
difference between a partition-wise estimator and our estimator. As expected, our approach clearly
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identifies regions of under- and over-coverage in the first scenario, and accurately recovers a near-
constant predictor equal to 1 − 𝛼 in the oracle setting.
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Figure 5: Illustration of conditional coverage estimation. The top panel shows data, generated from
𝑌 ∼ 𝒩 (0, 𝜎(𝑋1)) with 𝜎(𝑥) = 0.5 + |𝑥| + 𝑥2, where 𝑋 ∼ 𝒰([−1, 1]8), and 𝑋1 is the first component of
such a vector 𝑋. The bottom panel shows the conditional coverage estimation ℎ, conditional coverage
estimation induced by a partition-wise estimator, true conditional coverage, and desired 1−𝛼 conditional
coverage. Left: Conformal sets from the score 𝑆(𝑋, 𝑌 ) = |𝑌 | using 3, 000 samples. Right: Oracle sets
that achieve conditional coverage.

We evaluate the metrics on a test set of size 1, 500, as reported in Table 3. In the first experiment,
where the predictive sets are not conditional, certain metrics fail to detect deviations from conditional
coverage. This is the case for SSC, HSIC, and Pearson correlation as they rely solely on prediction
set sizes, which are uniform across samples. Similarly, metrics based on feature-space clustering (FSC,
CovGap) also fail to detect the coverage violation, due to the difficulty of clustering the feature space.
The only baseline that identifies a conditional coverage failure in this case is the WSC metric.

In contrast, under the second (oracle) strategy, all prediction sets satisfy conditional coverage by
construction. The WSC metric still reports a conditional coverage failure, with values comparable to the
first example. This occurs because, in high-dimensional feature spaces, WSC can overemphasize local
fluctuations and misidentify regions with apparent over- or under-coverage. Similarly, EOC detects a
false conditional coverage violation by grouping extreme outputs values together.

Our proposed 𝐿1-ERT metric and 𝐿2-ERT metrics, however, correctly distinguish between the two
settings: they detect the conditional coverage failure in the first example and reports no such failure in
the oracle case.

4.3 Real datasets

4.3.1 Regression

We next compare conditional coverage metrics across the most widely used conformal prediction strate-
gies. In particular, we build upon the benchmarking framework of Dheur et al. (2025) to evaluate
multivariate regression conformal prediction methods. For each strategy, we first train the underly-
ing predictive model and then conformalize its outputs using the standard split conformal prediction
procedure. Detailed descriptions of all strategies are provided in Appendix E.

Our evaluation is conducted on several datasets commonly used in regression studies. Dataset
specifications and algorithmic details are reported in Appendix G.1.

All experiments are repeated ten times, and we report averaged estimates across runs. We dis-
tinguish between univariate regression (𝑌 ∈ R) and multivariate regression (𝑌 ∈ R𝑘, for 𝑘 ≥ 2) to
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Not conditional Conditional
FSC 0.8680.014 ✗ 0.8810.012 ✓
CovGap 0.0160.004 ✗ 0.0140.004 ✓
WCovGap 0.0160.004 ✗ 0.0140.004 ✓
WSC 0.7400.019 ✓ 0.7900.014 ✗

EOC 0.3410.009 ✓ 0.1860.018 ✗

SSC 0.0040.003 ✗ 0.0130.003 ✓
HSIC 0.0000.000 ✗ 0.0000.000 ✓
Pearson 0.0000.000 ✗ 0.0190.016 ✓
𝐿1-ERT (Ours) 0.0910.007 ✓ −0.0050.009 ✓
𝐿2-ERT (Ours) 0.0090.001 ✓ −0.0000.000 ✓

Table 3: Conditional metrics for both synthetic samples and whether they accurately diagnose
conditional coverage. ✓: Accurate diagnostic. ✗: Failure.

highlight how conditional coverage behaves under increasing output dimensionality. The univariate
results are deferred to Appendix H.

Multivariate results. We present aggregated results across six datasets, with dataset specific in-
formation provided in Appendix H. Our first analysis compares the metrics 𝐿1-ERT and WCovGap,
which both aim to estimate E𝑋 [|1 − 𝛼 − 𝑝(𝑋)|], as shown in Figure 6. Each metric is averaged over
all datasets. Although both target the same quantity, our metric consistently yields a larger estimate
of conditional miscoverage. Because it serves as a lower bound on the true expectation, this indicates
that our approach offers a more precise view of conditional coverage than the partition based estimator
used in prior methods. Figure 7 then compares the estimation of WSC with our estimator for 𝐿2-ERT.

These results, however, must be interpreted with care. As shown in Figure 8, improvements in con-
ditional coverage often come hand-in-hand with larger prediction sets. For instance, the C-PCP (Dheur
et al., 2025) method achieves the best conditional coverage across all metrics, but also produces one of
the largest prediction intervals. Conversely, methods such as MVCS (Braun et al., 2025) yield smaller
predictive sets at the cost of poorer conditional coverage. This observation underscores a fundamental
trade-off: strategies that aggressively minimize prediction volume while maintaining marginal coverage
often sacrifice conditional coverage. Understanding and managing this trade-off is crucial for tailoring
conformal prediction methods to specific applications.
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Figure 6: Metric values averaged across all datasets for all methods in multivariate regression. Left:
𝐿1-ERT (lower is better). Right: WCovGap (lower is better)

4.3.2 Classification

In classification, most of the strategies are commonly tailored to specific problems such as long-tailed
classification, so we choose to only compare the two most used conformal prediction strategies for
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Figure 7: Metric values averaged across all datasets for all methods in multivariate regression. Left:
𝐿2-ERT (lower is better). Right: WSC (closer to 0.9 is better).
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Figure 8: Normalized set sizes averaged all datasets in multivariate regression, where the normalization
is done by dividing each volume by the smallest volume across all methods (smaller is better).

classification, given a predictive model that returns probabilities estimates 𝑓(𝑋) ∈ Δ𝑑. The first one
is the negative likelihood prediction (Sadinle et al., 2019) and uses the score 𝑆(𝑋, 𝑌 ) = −𝑝(𝑋)𝑌 . The
second one (Romano et al., 2020; Angelopoulos et al., 2021) uses the cumulative likelihood scores. We
first define the permutation 𝜋(𝑥) of {1, . . . , 𝐾} that sorts the probabilities in decreasing order, i.e.,

𝑓𝜋1(𝑥)(𝑥) ≥ 𝑓𝜋2(𝑥)(𝑥) ≥ · · · ≥ 𝑓𝜋𝐾(𝑥)(𝑥).

Then, the score function is defined as :

𝑆(𝑋, 𝑌 ) =
𝜋𝑘(𝑋)∑︁
𝑗=1

𝑓𝜋𝑗(𝑋)(𝑋), where 𝑌 = 𝜋𝑘(𝑋).

For MNIST, FashionMNIST, and CIFAR, we trained a CNN composed of two convolutional layers
followed by max pooling, then two fully connected layers with dropout and ReLU activations. The
model was trained with cross entropy loss to learn 𝑓 . We used early stopping when the accuracy fell
below 1 − 𝛼, since otherwise both conformal strategies tend to produce many empty sets, which would
make the results uninformative.

For the CIFAR100 experiment, we trained a ResNet model with cross-entropy loss to learn 𝑓 . To
learn the classifier for ERT, we re-used this pretrained model, but replaced its final layer with a new
one. This avoided the cost of learning a large feature space from scratch.

We report the ERT values in Table 4. For the classification problem, both strategies remain far from
conditional. In general, we believe that calibrating the predictors leads to better conditional coverage.
Interestingly for CIFAR100, the 𝐿1-ERT and the KL-ERT lead to two different conclusions: the former
suggests that the likelihood strategy is more conditional than the cumulative one, while the latter
suggests the opposite. We attribute this discrepancy to the larger number of empty predictive sets
produced by the likelihood strategy, for which the conditional coverage equals zero, that are weighted
differently by the KL than the 𝐿1. This is supported by the analysis of under-coverage and over-
coverage. This situation happens more frequently under the likelihood strategy. As a consequence,
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Dataset Method 𝐿1-ERT KL-ERT KL+-ERT KL−-ERT

CIFAR10 cumulative 0.0720.005 −0.0170.008 −0.0300.005 0.0120.006
likelihood 0.0160.002 0.0280.006 0.0070.001 0.0220.007

CIFAR100 cumulative 0.0410.005 0.1910.024 0.0160.008 0.1750.026
likelihood 0.0070.003 0.4090.025 0.0850.022 0.3230.020

FashionMNIST cumulative 0.1650.004 −0.2600.014 −0.1850.010 −0.0750.004
likelihood 0.0980.005 −0.0680.008 −0.0420.006 −0.0260.005

MNIST cumulative 0.1500.006 −0.2160.017 −0.1590.012 −0.0570.006
likelihood 0.1450.003 −0.1870.007 −0.1280.005 −0.0590.002

Table 4: ERT scores obtained for the classification problems.

this strategy yields a larger value of KL−-ERT than KL+-ERT, since the KL divergence assigns more
weight to such extreme situations.

5 Conclusions
Reliable estimation of conditional coverage is a key challenge for catalyzing further research progress
in conformal prediction. We have addressed this challenge by moving from partition-based estimators
to a functional-based framework. This shift provides a new perspective on how conditional coverage
can be understood, measured, and improved. By framing the problem as one of risk minimization,
we introduce a family of interpretable and reliable metrics that leverage the full expressive power of
modern predictive models to detect and quantify conditional coverage violations.

Our framework unifies and extends existing diagnostics, transforming what was previously a collec-
tion of local, nonparametric estimators into a coherent, model-based approach. This transition not only
provides more accurate and stable estimates but also offers a deeper understanding of what conditional
coverage represents in practice. While the reliability of our metrics naturally depends on the quality of
the learned classifier, this dependency is also a strength.

To encourage reproducibility and practical adoption, we release an open-source package implement-
ing all proposed metrics alongside existing ones. Empirical results confirm the benefits of our approach
and reveal that improving conditional coverage often leads to larger prediction sets. Understanding
and controlling this balance is a promising direction for future research.
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Appendix

A Additional metrics

Group-based diagnostics. We start by reviewing additional group-based diagnostics.

• Equalized / group-wise coverage. A fairness-style requirement is that every group attains
the nominal coverage:

P𝑌 |𝑔(𝑋)=g(𝑌 ∈ 𝐶𝛼(𝑋) | 𝑔(𝑋) = g) = 1 − 𝛼 ∀ g ∈ 𝒢.

This notion appears in the conformal fairness literature (e.g, Romano et al. 2020; Ding et al.
2025) and is evaluated in practice by returning the values 𝐶g for all g.

• Feature-stratified coverage (FSC). To focus on the worst-off group, FSC reports the minimal
empirical coverage across groups:

FSC = min
g∈𝒢

𝐶g.

FSC highlights subgroups where coverage is lowest and has been used in several works (e.g,
Angelopoulos and Bates 2023; Ding et al. 2023; Jung et al. 2023). This metric is often viewed as
a fairness measure, as it focuses on the group that exhibits the poorest coverage.

All of the above group-based diagnostics are sensitive to how the groups 𝒢 are chosen. Most of
the time, they are created by partitioning the feature space, either with clustering methods, or by
using categorical features. Much of the recent work focuses on finding or learning useful partitions that
reveal conditional coverage violations, by applying the induced CovGap or FSC metric. In the following,
unless otherwise specified, the groups used to evaluate FSC and CovGap are obtained by clustering the
feature space. We will use the following notation to refer to alternative grouping strategies.

• Equal opportunity of coverage (EOC). To account for differences in outcomes, EOC requires
that coverage rates across protected groups are equal conditional on the true label; in regression
this means that for each outcome value 𝑦 (or a discretization of 𝑦), the coverage within each
protected subgroup should match. This idea was introduced by Wang et al. (2023). However,
defining groups based on the outcome can lead to misleading metrics. For instance, consider
an interval predictor [𝑞𝛼/2, 𝑞1−𝛼/2] for 𝑌 ∼ 𝒩 (0, 1), where 𝑞𝛼/2 and 𝑞1−𝛼/2 are the 𝛼/2 and
1 − 𝛼/2 quantiles of the normal distribution respectively. If all extreme values of 𝑌 are grouped
together, the resulting group may show a coverage of zero, even though the prediction interval is
conditionally valid.

• Size-stratified coverage (SSC). Instead of grouping by features, SSC groups examples by the
size (e.g., volume or cardinality) of their prediction sets. It is model-agnostic and useful when
𝑋 is high-dimensional because it avoids requiring semantically meaningful groups. However,
SSC can fail to detect conditional-coverage problems in some settings. Consider, for example
regression with the nonconformity score 𝑆(𝑋, 𝑌 ) := |𝑌 − 𝑓(𝑋)| (cf. Angelopoulos et al., 2021).
This score cannot capture heteroskedasticity (Vovk, 2012), outputting prediction sets with the
same sizes independently of the covariate. Thus, in this case, SSC will not reveal coverage failures.
Furthermore, it requires access to the prediction set sizes which can be computationally costly
for some strategies.

Representation-based diagnostics (dependence on auxiliary variables). An alternative to
grouping is to measure statistical dependence between the coverage indicator

𝑍 := 1{𝑌 ∈ 𝐶𝛼(𝑋)}

and auxiliary variables 𝑉 (for example, prediction-set size, nonconformity score, residuals, or other
model-derived quantities). If 𝑍 is independent of 𝑉 , this is evidence that coverage does not systemati-
cally vary with 𝑍. Feldman et al. (2021) proposed two measures induced by this remark.
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• Pearson’s correlation. This is a simple measure of linear dependence,

𝑅corr(𝑍, 𝑉 ) = Cov(𝑍, 𝑉 )√︀
Var(𝑍) Var(𝑉 )

,

where 𝑉 is the prediction-set size. This is fast and interpretable but only captures linear rela-
tionships.

• HSIC (Hilbert–Schmidt independence criterion). The HSIC is a nonparametric kernel-
based dependence measure that can detect arbitrary nonlinear dependence. Given a suitable
pair of kernels, HSIC estimates the maximum mean discrepancy (MMD) (Gretton et al., 2005)
between the joint distribution P𝑍,𝑉 and the product of marginals P𝑍 ⊗P𝑉 . Feldman et al. (2021)
defined the metric based on HSIC:

𝑅HSIC(𝑍, 𝑉 ) =
√︁

HSIC(𝑍, 𝑉 ),

where the square root emphasizes small deviations from independence and gives a loss that is
easier to interpret and optimize. Here, 𝑉 is again the prediction-set size.

B Estimating Bregman divergences with ERTs

The following proposition is related to Theorem 3.1 and studies the setting when there is a single proper
score ℓ that estimates a distance 𝑑(1 − 𝛼, 𝑝) simultaneously for all 𝛼 and 𝑝.

Proposition 5.1. A function 𝑑(𝑝, 𝑞) arises as the divergence of some proper scoring rule if and only
if there exists a convex function 𝜙 : [0, 1] → R such that

𝑑(𝑝, 𝑞) = 𝐷𝜙(𝑞‖𝑝) = 𝜙(𝑞) − 𝜙(𝑝) − (𝑞 − 𝑝) 𝑠(𝑝)

for any choice of subgradient 𝑠(𝑝) ∈ 𝜕𝜙(𝑝). Furthermore, the associated proper score is defined as

ℓ𝜙(𝑝, 𝑦) := 𝜙(𝑝) + (𝑦 − 𝑝) 𝑠(𝑝).

and
ℓ𝜙-ERT = E𝑋 [𝐷𝜙(𝑝(𝑋)‖1 − 𝛼)].

Proof. Let ℓ be a proper scoring rule for binary outcomes and write 𝑝, 𝑞 ∈ [0, 1] for probabilities of the
event 𝑌 = 1. Define

𝜙(𝑞) := E𝑌 ∼𝑞

[︀
ℓ(𝑞, 𝑌 )

]︀
= 𝑞 ℓ(𝑞, 1) + (1 − 𝑞) ℓ(𝑞, 0).

Properness of ℓ means that for every fixed 𝑝 ∈ [0, 1] and every 𝑞 ∈ [0, 1],

𝜙(𝑞) = E𝑌 ∼𝑞[ℓ(𝑞, 𝑌 )] ≤ E𝑌 ∼𝑞[ℓ(𝑝, 𝑌 )] = 𝑞 ℓ(𝑝, 1) + (1 − 𝑞) ℓ(𝑝, 0).

Rearranging gives
𝜙(𝑞) ≤ 𝜙(𝑝) + (𝑞 − 𝑝)(ℓ(𝑝, 1) − ℓ(𝑝, 0))

so 𝜙 is convex on [0, 1] and the function 𝑝 ↦→ ℓ(𝑝, 1) − ℓ(𝑝, 0) defines a subgradient of 𝜙 at 𝑝. Denote
by 𝑠(𝑝) ∈ 𝜕𝜙(𝑝) any such subgradient. Then for every 𝑝, 𝑞 ∈ [0, 1],

E𝑞[ℓ(𝑝, 𝑌 )] = 𝜙(𝑝) + (𝑞 − 𝑝) 𝑠(𝑝),

and hence the divergence of ℓ satisfies

𝑑ℓ(𝑝, 𝑞) = E𝑞[ℓ(𝑝, 𝑌 )] − E𝑞[ℓ(𝑞, 𝑌 )] = 𝜙(𝑝) + (𝑞 − 𝑝) 𝑠(𝑝) − 𝜙(𝑞) = 𝜙(𝑞) − 𝜙(𝑝) − (𝑞 − 𝑝) 𝑠(𝑝),

which is exactly the Bregman divergence 𝐷𝜙(𝑞‖𝑝) generated by 𝜙.
Conversely, let 𝜙 : [0, 1] → R be convex and for each 𝑝 ∈ [0, 1] choose a subgradient 𝑠(𝑝) ∈ 𝜕𝜙(𝑝).

Define a score ℓ𝜙 by
ℓ𝜙(𝑝, 𝑦) := 𝜙(𝑝) + (𝑦 − 𝑝) 𝑠(𝑝).
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by construction, and convexity of 𝜙 implies for every 𝑝 and 𝑞,

E𝑞[ℓ𝜙(𝑝, 𝑌 )] = 𝜙(𝑝) + (𝑞 − 𝑝) 𝑠(𝑝) ≥ 𝜙(𝑞).

Thus ℓ𝜙 is proper, and its divergence equals

E𝑞[ℓ𝜙(𝑝, 𝑌 )] − E𝑞[ℓ𝜙(𝑞, 𝑌 )] = 𝜙(𝑝) + (𝑞 − 𝑝) 𝑠(𝑝) − 𝜙(𝑞) = 𝐷𝜙(𝑞‖𝑝).

Therefore a function 𝑑(𝑝, 𝑞) arises as the divergence of a proper scoring rule if and only if it is the
Bregman divergence of some convex generator 𝜙, as claimed. Note that the score ℓ𝜙 is determined up
to addition of an arbitrary function of the outcome whose expectation under every 𝑞 is zero, and that
when 𝜙 is differentiable the subgradient 𝑠(𝑝) may be replaced by the derivative 𝜙′(𝑝).

Using this proper score to evaluate the ℓ𝜙-ERT we get

ℓ𝜙-ERT = ℛℓ𝜙(1 − 𝛼) − ℛℓ𝜙(𝑝)
= E𝑋,𝑍 [ℓ𝜙(1 − 𝛼, 𝑍) − ℓ𝜙(𝑝(𝑋), 𝑍)]
= E𝑋 [E𝑍 [ℓ𝜙(1 − 𝛼, 𝑍) − ℓ𝜙(𝑝(𝑋), 𝑍)|𝑋]]
= E𝑋 [E𝑍∼𝑝(𝑋)[ℓ𝜙(1 − 𝛼, 𝑍) − ℓ𝜙(𝑝(𝑋), 𝑍)]]
= E𝑋 [𝑑ℓ𝜙(1 − 𝛼, 𝑝(𝑋))]
= E𝑋 [𝐷𝜙(𝑝(𝑋)‖1 − 𝛼)].

C Link with Gibbs et al. (2025)

To get predictive sets with conditional guarantees, Gibbs et al. (2025) used the fact that conditional
coverage holds if for all measurable function 𝜙,

E𝑋,𝑍 [𝜙(𝑋)(1 − 𝛼 − 𝑍)] = 0.

To obtain a more operational interpretation, suppose we restrict attention to predictors of the form
ℎ(𝑥) = 𝜃𝑇 𝜑(𝑥), where 𝜑(𝑥) is a feature map. The associated mean squared risk is

𝐹 (𝜃) = E𝑋,𝑍 [(𝜃𝑇 𝜑(𝑋) − 𝑍)2]

and has gradient
∇𝜃𝐹 (𝜃) = 2E𝑋,𝑍 [(𝜃𝑇 𝜑(𝑋) − 𝑍)𝜑(𝑋)].

Write 𝜃𝛼 such that ℎ𝜃𝛼(𝑋) = 1 − 𝛼, (that exists when 𝜑(𝑋) has a non-zero constant component).
For this class of models, our metric 𝐿2-ERT compares any 𝜃 to this target via

𝐹 (𝜃𝛼) − inf
𝜃

𝐹 (𝜃).

When conditional coverage holds, both the gradient and the 𝐿2-ERT are equal to zero. In this sense,
the quantity 𝐹 (𝜃𝛼) − 𝐹 (𝜃) offers more interpretability than the gradient alone. While the gradient
describes only a local direction in the parameter space of improvement, the risk difference has a clear
interpretation that has already been discussed. Indeed, when 𝐹 (𝜃𝛼) − inf𝜃 𝐹 (𝜃) = 0 we have E𝑋,𝑍 [(1 −
𝛼−𝑍)𝜑(𝑋)] = 0 but it can be that 𝐹 (𝜃𝛼)− inf𝜃 𝐹 (𝜃) is very small but that ‖E𝑋,𝑍 [(1−𝛼−𝑍)𝜑(𝑋)]‖2 is
very large. That is why E𝑋,𝑍 [𝜙(𝑋)(1 − 𝛼 − 𝑍)] cannot be used as an interpretable quantity to quantify
conditional miscoverage deviation, but only to assess if there is conditional coverage or not.

D Extension to a conditional coverage rule

While conditional coverage is often defined with a fixed target level,

P
(︀
𝑌 ∈ 𝐶𝛼(𝑋test) | 𝑋test

)︀
= 1 − 𝛼 P𝑋 -almost surely,

ensuring that the prediction set 𝐶𝛼(𝑋) covers the true label with probability 1 − 𝛼 for every possible
input 𝑋, a uniform coverage level may be neither necessary nor desirable in practice. In many settings,
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one may wish to adapt the coverage level to reflect varying uncertainty, heteroskedastic noise, or
task-specific risk preferences. Recent conformal prediction methods allow adapting 𝛼 dynamically to
optimize other objectives (Gauthier et al., 2025b,a).

To formalize this flexibility, we introduce a conditional miscoverage rule 𝛼 : 𝒳 → [0, 1], which pre-
scribes a desired miscoverage level 𝛼(𝑋) that may vary with the input features. Under this generalized
framework, the target conditional coverage condition becomes

E
[︀
1{𝑌 ∈ 𝐶𝛼(𝑋test)} | 𝑋test

]︀
= 1 − 𝛼(𝑋test) P𝑋 -almost surely.

This formulation recovers the standard conformal setting in the special case where 𝛼(𝑋) is constant,
while enabling the analysis of predictors designed to achieve non-uniform, data-dependent coverage
guarantees. It thus provides a principled way to study how prediction methods align with arbitrary,
application-driven notions of conditional reliability. This could be useful for example in classification,
where the discrete nature of the target may not allow to achieve constant coverage.

We next adapt our framework for the ℓ-ERT metric under this setting by writing

ℓ-ERT = ℛℓ(1 − 𝛼) − ℛℓ(𝑝) = E
[︁(︀

𝑑ℓ(1 − 𝛼(𝑋), 𝑝(𝑋)
)︀]︁

.

and its variational form

ℓ-ERT(ℎ) = ℛℓ(1 − 𝛼) − ℛℓ(ℎ) = E𝑋,𝑌

[︁
ℓ(1 − 𝛼(𝑋), 𝑌

)︀
− ℓ(ℎ(𝑋), 𝑌

)︀]︁
.

The formulas above work for the 𝐿2-ERT and the KL-ERT, where the proper score ℓ does not depend
on 1 − 𝛼. If general distance metrics should be estimated as in Theorem 3.1, such as for the 𝐿1-ERT,
the proper scoring rule ℓ needs to depend on 𝛼(𝑋), and we obtain

ℓ-ERT = E
[︁(︀

𝑑ℓ𝛼(𝑋)(1 − 𝛼(𝑋), 𝑝(𝑋)
)︀]︁

.

and its variational form

ℓ-ERT(ℎ) = E𝑋,𝑌

[︁
ℓ𝛼(𝑋)(1 − 𝛼(𝑋), 𝑌

)︀
− ℓ𝛼(𝑋)(ℎ(𝑋), 𝑌

)︀]︁
.

The remaining components of the procedure remain unchanged. For convenience, we refer to the
resulting metrics using the same terminology as in the fixed 1 − 𝛼 case, since that setting corresponds
to a particular instance of this more general framework.

E Benchmarking strategies

The strategies we compare can be differentiated in four main groups—ones that uses density estimation,
latent spaces, hyper-rectangles, or minimizing a quantity while ensuring marginal coverage. We build
upon the work of Dheur et al. (2025) that already explained most of those strategies, but we recall
their specificities here for completeness.

Among the density-based methods, given a predictive density 𝑝(𝑦|𝑥), the benchmarked strategies
are:

• DR-CP (Sadinle et al., 2019): Defines the conformity score as 𝑆DR-CP(𝑋, 𝑌 ) = −𝑝(𝑌 |𝑋), leading
to prediction regions that are density superlevel sets, 𝐶DR-CP(𝑋) = {𝑦 : 𝑝(𝑦|𝑋) ≥ −𝑞}.

• C-HDR (Izbicki et al., 2022): Conformalize the highest predictive density (HPD) by using
the nonconformity score 𝑆HDP(𝑋, 𝑌 ) = P𝑦∼𝑝(·|𝑋) ( 𝑝(𝑦|𝑋) ≥ 𝑝(𝑌 |𝑋) ). It then produces regions
𝐶C-HDR(𝑋) = {𝑦 : 𝑓(𝑦|𝑋) ≥ 𝑡𝑞}, where 𝑡𝑞 defines the highest density region (HDR) at level 𝑞.

• PCP (Wang et al., 2023): Draws 𝐿 samples 𝑌 (𝑙) ∼ 𝑝𝑌 |𝑥 with 𝑝𝑌 |𝑥 the estimated conditional distri-
bution, and defines conformity as the distance to the nearest sample, 𝑆PCP(𝑋, 𝑌 ) = min𝑙∈[𝐿] ‖𝑌 − 𝑌 (𝑙)‖2;
the corresponding region is a union of 𝐿 balls centered at the sampled points.

• HD-PCP (Wang et al., 2023): Extends PCP by retaining only the top ⌊(1 − 𝛼)𝐿⌋ samples with
highest density, concentrating the prediction region on high-density areas.
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• C-PCP (Dheur et al., 2025): Estimates the conditional CDF of the conformity score 𝑆(𝑋, 𝑌 ),

𝑆CDF(𝑥, 𝑦) = P(𝑆𝑊 (𝑋, 𝑌 ) ≤ 𝑆𝑊 (𝑥, 𝑦) | 𝑋 = 𝑥),

using a Monte Carlo approximation with 𝐾 samples

𝑆ECDF(𝑥, 𝑦) = 1
𝐾

𝐾∑︁
𝑘=1

1[𝑆𝑊 (𝑥, 𝑌 (𝑘)) ≤ 𝑆𝑊 (𝑥, 𝑦)], 𝑌 (𝑘) ∼ 𝐹𝑌 |𝑥.

When 𝑆(𝑥, 𝑦) = 𝑆PCP(𝑥, 𝑦), this yields

𝑆C-PCP(𝑥, 𝑦) = 1
𝐾

∑︁
𝑘∈[𝐾]

1
{︃

min
𝑙∈[𝐿]

‖𝑌 (𝑘) − 𝑌 (𝑙)‖2 ≤ min
𝑙∈[𝐿]

‖𝑦 − 𝑌 (𝑙)‖2

}︃
.

• CP2-PCP (Plassier et al., 2024): Builds predictive sets by using samples from an implicit
conditional generative model. For each calibration point it uses two independent draws from the
conditional generator to define a conformity score and an inflation parameter 𝜏 that accounts for
the conditional mass around likely outputs. At prediction time it forms a union of balls around
new generated samples, with their size chosen to guarantee marginal validity while improving
approximate conditional adaptivity.

• MSE: Naïve multivariate generalization of the univariate score 𝑆(𝑋, 𝑌 ) = |𝑌 − 𝑓(𝑋)|, by using
the multivariate score 𝑆(𝑋, 𝑌 ) = ‖𝑌 − 𝑓(𝑋)‖2.

Among the latent space-based methods, the benchmarked strategies are:

• STDQR (Feldman et al., 2023): Constructs multivariate prediction regions in a latent space 𝒵
to overcome limitations of standard multivariate prediction methods. Instead of using directional
quantile regression as originally introduced, we follow Dheur et al. (2025) procedure where the
region 𝑅𝒵 with coverage 1 − 𝛼 is constructed by selecting the 1 − 𝛼 proportion of latent samples
closest to the origin, ensuring correct coverage directly in the latent space. These latent regions
are then mapped to the output space 𝒴 via a conditional generative model (originally a CVAE,
here replaced with a normalizing flow). A conformalization step refines coverage by creating a
grid of latent samples, mapping them to 𝒴, and forming small balls around each mapped point.

• L-CP (Dheur et al., 2025): Defines conformity in a latent space using an invertible conditional
generative model 𝑄̂ : 𝒵 × 𝒳 → 𝒴. A latent variable 𝑍 ∼ 𝒩 (0, 𝐼𝑑) is mapped to the output space
via 𝑄̂, and the conformity score is measured in latent space as

𝑆L-CP(𝑋, 𝑌 ) = ‖𝑄̂−1(𝑌 ; 𝑋)‖.

The prediction region is obtained by taking a ball of radius 𝑞 around the origin in latent space and
mapping it back to the output space. This method avoids grid-based directional quantile regres-
sion, improving scalability and computational efficiency, and generalizes distributional conformal
prediction to multivariate outputs.

Among the hyper-rectangle-based methods, the benchmarked strategies are:

• CopulaCPTS (Sun and Yu, 2024): This method models the joint dependence between marginal
conformity scores via a copula. The calibration data are split into two sets: 𝒟cal-1 to estimate
empirical CDFs 𝐹𝑖 of conformity scores for each output dimension 𝑖 ∈ [𝑑], and 𝒟cal-2 to calibrate
the copula parameters. The optimal thresholds 𝑠*

1, . . . , 𝑠*
𝑑 are obtained by minimizing a coverage-

based loss, ensuring marginal validity while reducing region size. The final prediction region
is

𝐶CopulaCPTS(𝑋) = {𝑦 ∈ 𝒴 : 𝑆𝑖(𝑋, 𝑦𝑖) < 𝑠*
𝑖 , ∀𝑖 ∈ [𝑑]}.

Other copula’s based strategies include Messoudi et al. (2021); Mukama et al. (2025).
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• HR (Romano et al., 2019; Zhou et al., 2024): Constructs axis-aligned (hyper-rectangular) predic-
tion regions by fitting univariate quantiles 𝑞𝛼/2(𝑥)𝑖 and 𝑞1−𝛼/2(𝑥)𝑖 folowing Romano et al. (2019)
for each output dimension 𝑖 ∈ [𝑘], with 𝛼̃ = 2(1 − (1 − 𝛼)1/𝑘). The conformity score is defined as
(inspired from Zhou et al. (2024) which extends uni-variate scorings to multi-variate ones)

𝑆HR(𝑋, 𝑌 ) = max
𝑖∈[𝑘]

{︁
𝑞𝛼/2(𝑋)𝑖 − 𝑌𝑖, 𝑌𝑖 − 𝑞1−𝛼/2(𝑋)𝑖

}︁
,

yielding rectangular prediction regions aligned with coordinate axes.

Finally, among the strategies which minimizes the size of the prediction sets, we use:
• MVCS (Braun et al., 2025): Minimizes the volume of the sets {𝑦 ∈ R𝑘, ‖𝑀(𝑋)(𝑦−𝑓(𝑋))‖𝑝 ≤ 1}

where 𝑀(𝑋) is positive definite, 𝑓(𝑋) ∈ R𝑘, and 𝑝 > 0 defines a 𝑝-norm, while ensuring valid
marginal coverage. The conformalization set is done with the score 𝑆(𝑋, 𝑌 ) = ‖𝑀(𝑋)(𝑌 − 𝑓(𝑋)‖𝑝.

F Strong classifiers

Here, we provide more details on the classifiers used in Section 4. In the following, we will refer to
training and test data for the data that the classifier ℎ is trained and evaluated on, not to be confused
with the data that the original prediction set method 𝐶𝛼 is trained on. We employ the following
classifiers in our evaluation:

Tabular foundation models. We evaluate the recent models RealTabPFN-2.5 (Grinsztajn et al.,
2025) and TabICLv1.1 (Qu et al., 2025). These models can predict ℎ(𝑥test

1 ), . . . , ℎ(𝑥test
𝑛 ) with a single

forward pass through a neural network that takes both the test input and the entire training set into
account. They have been found to perform very well already without hyperparameter tuning (Erickson
et al., 2025).

Gradient-boosted decision trees. We choose two representatives: CatBoost (Prokhorenkova et al.,
2018) is known for its strong default performance. We adopt its hyperparameters from AutoGluon
(Erickson et al., 2020) and TabArena (Erickson et al., 2025), using 300 early stopping rounds instead of
AutoGluon’s custom early stopping logic. To obtain a faster model, we use LightGBM (Ke et al., 2017)
with cheaper hyperparameters adapted from the tuned defaults of Holzmüller et al. (2024), reducing
the number of early stopping rounds to 100 and using cross-entropy loss for early stopping (as for
CatBoost). Both CatBoost and LightGBM are fitted in parallel for eight inner cross-validation folds
for each outer cross-validation fold, following TabArena. The inner cross-validation folds are used for
early stopping, and the final validation predictions are concatenated and used to fit a quadratic scaling
post-hoc calibrator (Berta et al., 2025). Test set predictions are made based on the post-hoc calibrator
applied to the average of the eight models’ predictions.

Bagging models. Random Forest (Breiman, 2001) is a popular baseline for tabular ML. Extremely
randomized trees (ExtraTrees/XT, Geurts et al., 2006) are a more randomized variant that performs
similarly while being faster (Erickson et al., 2025). We fit both models with 300 estimators and otherwise
use the default hyperparameters from scikit-learn (Pedregosa et al., 2011).

PartitionWise Partition-wise estimation first groups samples in the feature space and then predicts
by using the average label within each group. The predictor relies on KMeans to form the partitions,
and the number of clusters is selected through a fourth root rule based on the test set size, which keeps
the model flexible while avoiding clusters that are too small. At inference time, each new sample is
assigned to its nearest cluster and the model predicts the mean stored for that cluster.

Trade-offs. We chose to only fit boosted trees with inner cross-validation, both because they need
validation sets for early stopping and because they are still reasonably fast with parallelization. The
use of cross-validation also allows for the application of post-hoc calibration. Other methods might
also benefit from post-hoc calibration, especially for non-L1 metrics, at the cost of higher runtime due
to cross-validation.
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Discussion and other options. We omit from-scratch trained tabular neural networks from our
comparison as they are relatively slow, especially on CPUs, and their un-tuned performance is sub-
optimal (Erickson et al., 2025). If runtime is less of a concern, for ideal sample-efficiency, automated
machine learning methods such as AutoGluon (Erickson et al., 2020) can be employed that combine
multiple models and hyperparameter setting, ensembling, and post-hoc calibration. However, when
these methods are used with time limits, the result may not be reproducible.

Hardware. We ran tabular foundation models on GPUs (NVIDIA RTX8000, V100 and RTX6000)
and the other models on CPUs (Cascade Lake Intel Xeon 5217 with 8 cores and AMD EPYC 7302
with 16 cores).

G Additional information regarding the experiments

G.1 Details on the datasets

See Table 5 for details on the datasets used for the classifiers comparison, Table 6 for details on the
uni-variate datasets and Table 7 for the multivariate ones.

Dataset
Number of

samples
Number

of test samples
Number

of features
physiochemical_protein 45730 22865 9
Food_Delivery_Time 45593 22797 10
diamonds 53940 26970 9
superconductivity 21263 10632 81

Table 5: Description of the univariate datasets.

Dataset
Number of

samples
Number

of test samples
Number

of features
ailerons 13750 1375 40
bank8FM 8192 820 8
cpu-act 8192 820 21
house-8L 22784 2280 8
miami 13932 1394 16
sulfur 10081 1009 6

Table 6: Description of the univariate datasets.

Dataset
Number of

samples
Number

of test samples
Number

of features
Dimension
of targets

Bias 7752 776 22 2
CASP 45730 4574 8 2
House 21613 2162 17 2
rf1 9125 914 64 8
rf2 9125 914 576 8
Taxi 61286 6130 6 2

Table 7: Description of the multivariate datasets.

H Additional experiments

Synthetic dataset See Figures 9 & 10 & 11 & 12.

26



103 104

Number of test samples (log scale)

0.000

0.002

0.004

0.006

0.008

0.010

0.012
L

2
-E

R
T

CatBoost
LightGBM
PartitionWise

RandomForest
TabICLv1.1

RealTabPFN-2.5
ExtraTrees

103 104

Number of test samples (log scale)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

L
2
-E

R
T

CatBoost
LightGBM
PartitionWise

RandomForest
TabICLv1.1

RealTabPFN-2.5
ExtraTrees

Figure 9: Illustration of the estimation of 𝐿2-ERT for different classifiers as a number of sampled data
available. Left: physiochemical_protein dataset Right: Diamonds dataset
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Figure 10: Illustration of the estimation of 𝐿2-ERT for different classifiers as a number of sampled data
available. Left: Food_Delivery_Time dataset Right: Superconductivity dataset
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Figure 11: Illustration of the estimation of KL-ERT for different classifiers as a number of sampled
data available. Left: physiochemical_protein dataset Right: Diamonds dataset

Uni-variate regression. See Figures 13 & 14 & 15.
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Figure 12: Illustration of the estimation of KL-ERT for different classifiers as a number of sampled
data available. Left: Food_Delivery_Time dataset Right: Superconductivity dataset
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Figure 13: Metric values averaged across all datasets for all methods in univariate regression. Left:
𝐿1-ERT (lower is better). Right: WCovGap (lower is better)
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Figure 14: Metric values averaged across all datasets for all methods in univariate regression. Left:
𝐿2-ERT (lower is better). Right: WSC (closer to 0.9 is better).
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Figure 15: Normalized set sizes averaged all datasets in univariate regression, where the normalization
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Dataset Method 𝐿1-ERT 𝐿2-ERT WSC WCovGap Size
A

ile
ro

ns
MSE 0.02870.0058 0.00100.0004 0.7770.015 0.0250.004 1.420.03
MVCS 0.02490.0042 0.00070.0004 0.7680.019 0.0230.003 1.430.02
HR 0.01260.0000 −0.00040.0000 0.8040.000 0.0170.000 1.460.00
DR-CP 0.00240.0000 −0.00070.0000 0.7830.000 0.0090.000 1.460.00
C-HDR 0.02930.0000 0.00130.0000 0.7830.000 0.0260.000 1.640.00
PCP 0.00720.0000 −0.00000.0000 0.7790.000 0.0200.000 1.580.00
HD-PCP 0.00040.0000 −0.00050.0000 0.7970.000 0.0270.000 1.440.00
C-PCP 0.03930.0000 0.00200.0000 0.8040.000 0.0260.000 1.800.00
CP2-PCP 0.00520.0000 −0.00030.0000 0.7990.000 0.0220.000 1.690.00
L-CP 0.01320.0000 −0.00010.0000 0.7790.000 0.0200.000 1.550.00
STDQR −0.00180.0000 −0.00050.0000 0.7900.000 0.0150.000 1.440.00
CopulaCPTS −0.00040.0000 −0.00090.0000 0.7940.000 0.0220.000 1.440.00

M
ia

m
iH

ou
sin

g2
01

6

MSE 0.07360.0050 0.00880.0015 0.6470.014 0.0560.012 0.910.02
MVCS 0.05090.0078 0.00470.0013 0.7130.023 0.0400.006 0.820.02
HR 0.02740.0001 0.00050.0002 0.7710.001 0.0280.001 0.870.00
DR-CP 0.03080.0003 0.00100.0002 0.7460.000 0.0330.001 0.850.00
C-HDR 0.01570.0003 0.00020.0003 0.8000.003 0.0180.000 0.950.00
PCP 0.02770.0005 0.00110.0005 0.7660.003 0.0220.000 0.960.01
HD-PCP 0.03240.0069 0.00160.0004 0.7570.000 0.0210.001 0.860.00
C-PCP 0.01840.0026 0.00020.0003 0.8020.002 0.0230.002 1.060.00
CP2-PCP 0.02940.0040 0.00070.0003 0.7770.001 0.0170.001 1.010.00
L-CP 0.00180.0027 −0.00030.0000 0.7820.000 0.0150.001 0.930.00
STDQR 0.01710.0012 0.00030.0001 0.7640.000 0.0180.000 0.850.00
CopulaCPTS 0.01280.0001 0.00020.0000 0.7920.000 0.0210.000 0.890.00

ba
nk

8F
M

MSE 0.09760.0082 0.02490.0026 0.5350.029 0.0430.010 0.830.04
MVCS 0.06050.0089 0.00910.0025 0.6390.038 0.0210.008 0.710.01
HR 0.02440.0000 0.00070.0000 0.7440.000 0.0290.000 0.880.00
DR-CP 0.05880.0007 0.00450.0001 0.7440.000 0.0340.000 0.710.00
C-HDR 0.03300.0001 0.00070.0001 0.8010.003 0.0320.000 0.970.00
PCP 0.03570.0003 0.00230.0001 0.7180.001 0.0320.001 0.830.00
HD-PCP 0.03220.0021 0.00170.0003 0.7680.001 0.0250.001 0.800.00
C-PCP 0.02150.0035 0.00030.0000 0.7800.000 0.0210.000 1.070.00
CP2-PCP 0.01360.0021 −0.00010.0000 0.7550.003 0.0200.000 1.010.00
L-CP 0.02310.0003 0.00020.0001 0.7450.004 0.0330.000 0.940.00
STDQR 0.00160.0018 0.00030.0002 0.7400.001 0.0190.000 0.820.00
CopulaCPTS 0.02370.0000 0.00110.0000 0.7610.000 0.0150.000 0.870.00

30



Dataset Method 𝐿1-ERT 𝐿2-ERT WSC WCovGap Size
cp

u-
ac

t
MSE 0.07520.0108 0.01420.0034 0.6120.034 0.0490.005 1.080.02
MVCS 0.07640.0036 0.02380.0022 0.6710.012 0.0270.003 1.050.04
HR 0.00540.0015 −0.00060.0000 0.7540.005 0.0180.002 1.010.04
DR-CP 0.02760.0072 0.00250.0013 0.7700.005 0.0240.001 0.880.00
C-HDR 0.03530.0040 0.00190.0005 0.7350.011 0.0390.005 1.010.01
PCP 0.02980.0040 0.00030.0005 0.7770.012 0.0310.001 1.000.01
HD-PCP 0.02150.0005 0.00020.0000 0.7710.004 0.0240.001 0.910.00
C-PCP 0.02750.0172 0.00070.0008 0.7660.005 0.0330.007 1.190.04
CP2-PCP 0.01660.0034 −0.00010.0001 0.7390.007 0.0150.001 1.020.00
L-CP 0.04000.0028 0.00150.0003 0.7410.003 0.0240.003 1.100.04
STDQR 0.02720.0047 0.00070.0003 0.7680.008 0.0220.002 0.930.00
CopulaCPTS 0.01900.0005 0.00070.0000 0.7430.009 0.0180.000 1.010.03

ho
us

e-
8L

MSE 0.05430.0051 0.00470.0007 0.7230.013 0.0390.004 1.530.01
MVCS 0.04060.0076 0.00290.0007 0.7630.012 0.0230.004 1.470.01
HR 0.01380.0007 0.00010.0001 0.7680.011 0.0200.003 1.510.01
DR-CP 0.03510.0031 0.00180.0004 0.7700.016 0.0250.006 1.350.03
C-HDR 0.01100.0008 0.00010.0000 0.8070.005 0.0130.004 1.470.04
PCP 0.02220.0079 0.00080.0003 0.7860.007 0.0240.003 1.650.01
HD-PCP 0.02310.0004 0.00060.0002 0.7970.017 0.0190.004 1.410.03
C-PCP 0.01580.0015 0.00030.0001 0.8060.017 0.0150.000 1.720.01
CP2-PCP 0.01600.0018 0.00040.0001 0.7990.015 0.0160.001 1.740.03
L-CP 0.02140.0109 0.00320.0026 0.7520.024 0.0230.010 1.700.03
STDQR 0.02190.0021 0.00030.0000 0.7820.013 0.0190.003 1.450.00
CopulaCPTS 0.02690.0042 0.00070.0003 0.7700.007 0.0220.003 1.510.00

su
lfu

r

MSE 0.02010.0063 0.00010.0003 0.7530.017 0.0210.005 1.450.04
MVCS 0.01160.0099 −0.00020.0007 0.7440.020 0.0250.003 1.410.04
HR 0.00610.0010 −0.00000.0001 0.7880.002 0.0160.000 1.540.00
DR-CP 0.00010.0024 −0.00050.0001 0.7620.000 0.0180.000 1.520.00
C-HDR 0.01860.0067 −0.00090.0007 0.7890.009 0.0260.005 1.610.03
PCP 0.01590.0022 0.00040.0000 0.7950.002 0.0280.001 1.750.01
HD-PCP 0.01260.0011 −0.00050.0001 0.7930.004 0.0280.001 1.560.00
C-PCP 0.00370.0077 −0.00060.0001 0.7710.005 0.0170.003 1.800.02
CP2-PCP 0.00270.0030 −0.00080.0002 0.7910.002 0.0210.001 1.710.00
L-CP 0.02300.0026 0.00070.0001 0.7890.009 0.0320.002 1.620.01
STDQR 0.00620.0003 −0.00050.0000 0.7840.004 0.0130.000 1.520.00
CopulaCPTS 0.00070.0025 −0.00040.0001 0.7530.003 0.0160.001 1.510.00

Multivariate regression The metrics EOC and SSC are used to compute the CovGap.
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Dataset Method 𝐿1-ERT 𝐿2-ERT WSC WCovGap Size
C

A
SP

MSE 0.04070.0040 0.00230.0004 0.8180.007 0.0250.003 1.260.01
MVCS 0.03040.0039 0.00160.0005 0.8340.006 0.0160.002 1.230.01
HR 0.02520.0000 0.00080.0000 0.8240.000 0.0200.000 1.320.00
DR-CP 0.01770.0000 0.00050.0000 0.8360.000 0.0170.000 1.250.00
C-HDR 0.02350.0000 0.00080.0000 0.8620.000 0.0210.000 1.350.00
PCP 0.01470.0000 0.00030.0000 0.8270.000 0.0220.000 1.410.00
HD-PCP 0.02380.0000 0.00060.0000 0.8170.000 0.0180.000 1.300.00
C-PCP 0.02320.0000 0.00040.0000 0.8450.000 0.0090.000 1.440.00
CP2-PCP 0.01540.0000 0.00030.0000 0.8450.000 0.0160.000 1.430.00
L-CP 0.01170.0000 0.00020.0000 0.8460.000 0.0090.000 1.420.00
STDQR 0.01580.0000 0.00040.0000 0.8190.000 0.0160.000 1.320.00
CopulaCPTS 0.01400.0000 0.00020.0000 0.8310.000 0.0130.000 1.340.00

bi
as

MSE 0.02680.0174 0.00110.0010 0.7220.026 0.0170.005 1.030.01
MVCS 0.02190.0096 0.00050.0009 0.7260.021 0.0140.004 1.040.02
HR 0.01470.0000 −0.00030.0000 0.7090.000 0.0290.000 1.090.00
DR-CP 0.03380.0000 0.00270.0000 0.6790.000 0.0310.000 1.200.00
C-HDR 0.03870.0000 0.00180.0000 0.6960.000 0.0340.000 1.360.00
PCP 0.01810.0000 −0.00030.0000 0.7050.000 0.0240.000 1.310.00
HD-PCP 0.01830.0000 0.00080.0000 0.6920.000 0.0290.000 1.190.00
C-PCP 0.00280.0000 −0.00060.0000 0.7050.000 0.0270.000 1.410.00
CP2-PCP 0.01990.0000 0.00290.0000 0.6670.000 0.0390.000 1.300.00
L-CP 0.04850.0000 0.00330.0000 0.6460.000 0.0420.000 1.240.00
STDQR 0.01390.0000 −0.00000.0000 0.6920.000 0.0220.000 1.190.00
CopulaCPTS 0.04460.0000 0.00230.0000 0.6750.000 0.0440.000 1.210.00

ho
us

e

MSE 0.05990.0070 0.00640.0017 0.6820.021 0.0440.006 1.090.02
MVCS 0.06050.0049 0.00710.0009 0.7130.018 0.0380.005 1.020.03
HR 0.03390.0038 0.00260.0006 0.7400.012 0.0380.001 1.170.02
DR-CP 0.04500.0001 0.00370.0002 0.7540.002 0.0260.000 1.070.00
C-HDR 0.01670.0054 0.00080.0001 0.7580.000 0.0210.000 1.110.00
PCP 0.05130.0024 0.00490.0002 0.7400.000 0.0210.001 1.210.00
HD-PCP 0.03610.0037 0.00230.0001 0.7460.007 0.0260.001 1.120.00
C-PCP 0.01810.0030 0.00050.0000 0.7700.003 0.0200.000 1.280.00
CP2-PCP 0.01660.0042 0.00050.0002 0.7900.004 0.0180.002 1.270.00
L-CP 0.02860.0006 0.00180.0001 0.7740.000 0.0200.000 1.220.00
STDQR 0.03820.0006 0.00270.0001 0.7510.007 0.0280.000 1.140.00
CopulaCPTS 0.02120.0013 0.00080.0001 0.7660.002 0.0130.000 1.220.00
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Dataset Method 𝐿1-ERT 𝐿2-ERT WSC WCovGap Size
rf1

MSE 0.06470.0063 0.00680.0020 0.6490.030 0.0600.006 0.950.00
MVCS 0.10110.0074 0.02260.0034 0.5880.032 0.0710.007 0.400.01
HR 0.03720.0134 0.00290.0025 0.7170.027 0.0360.000 0.570.02
DR-CP 0.08600.0016 0.01320.0002 0.6890.010 0.0530.009 0.460.02
C-HDR 0.04840.0059 0.00320.0001 0.7650.021 0.0300.010 0.460.03
PCP 0.09580.0005 0.01010.0006 0.6560.009 0.0750.001 0.480.01
HD-PCP 0.09720.0066 0.01940.0030 0.6120.004 0.0700.005 0.470.01
C-PCP 0.03240.0088 0.00190.0017 0.7440.009 0.0280.004 0.480.01
CP2-PCP 0.04480.0121 0.00420.0030 0.7170.000 0.0290.013 0.460.02
L-CP 0.05500.0004 0.00590.0014 0.7020.005 0.0300.013 0.460.02
STDQR 0.09340.0113 0.01520.0049 0.6370.021 0.0730.004 0.480.01
CopulaCPTS 0.07590.0005 0.00870.0023 0.7330.075 0.0380.006 0.480.02

rf2

MSE 0.04980.0096 0.00330.0021 0.7370.016 0.0240.003 0.950.00
MVCS 0.11000.0097 0.03290.0058 0.5730.042 0.0760.009 0.530.02
HR 0.05570.0019 0.01100.0001 0.7140.014 0.0200.005 1.070.01
DR-CP 0.06690.0015 0.01280.0001 0.7270.020 0.0220.001 0.390.00
C-HDR 0.05240.0099 0.00490.0021 0.7570.004 0.0210.001 0.400.00
PCP 0.08250.0007 0.01450.0027 0.7010.005 0.0250.007 0.420.01
HD-PCP 0.07220.0035 0.01150.0004 0.7390.011 0.0230.000 0.420.00
C-PCP 0.03660.0053 0.00110.0000 0.7490.021 0.0160.004 0.420.00
CP2-PCP 0.02910.0081 0.00130.0004 0.7500.022 0.0150.004 0.420.00
L-CP 0.05800.0186 0.00770.0030 0.7140.015 0.0130.001 0.400.00
STDQR 0.07020.0079 0.00950.0016 0.7430.004 0.0170.004 0.420.00
CopulaCPTS 0.06430.0024 0.01220.0026 0.7070.087 0.0310.002 1.431.02

ta
xi

MSE 0.02340.0031 0.00110.0001 0.8150.003 0.0180.001 1.880.00
MVCS 0.01950.0027 0.00070.0002 0.8160.006 0.0200.001 3.120.01
HR 0.00440.0025 0.00010.0000 0.8440.002 0.0070.002 3.480.00
DR-CP 0.01970.0015 0.00050.0002 0.8300.004 0.0140.001 2.700.01
C-HDR 0.01280.0002 0.00020.0000 0.8400.004 0.0110.001 2.740.00
PCP 0.01520.0023 0.00070.0001 0.8080.004 0.0200.003 3.200.01
HD-PCP 0.01060.0011 0.00040.0002 0.8330.005 0.0150.002 2.990.02
C-PCP 0.01120.0068 0.00010.0001 0.8460.001 0.0090.001 3.260.01
CP2-PCP −0.00260.0047 −0.00000.0000 0.8490.007 0.0120.002 3.240.02
L-CP 0.00880.0006 0.00010.0000 0.8320.000 0.0090.000 3.040.00
STDQR 0.00530.0004 0.00020.0001 0.8390.002 0.0100.000 3.040.01
CopulaCPTS 0.00300.0026 0.00000.0000 0.8470.000 0.0100.001 3.380.03
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