
1

Stability of Deep Q-Learning in a confrontational
environment

Sacha Braun, Lucas Gascon, Hugo Malafosse

Abstract—The goal of this project is to code a pygame
environment where several agents will confront each other: on
a discrete mesh of space, an agent of type ”Cat” pursues an
agent of type ”Mouse”. As soon as the cat catches the mouse,
the game stops. The objective of this project is to successfully
train adversary agents on complex boards, with walls and speed
bumps for example, and then to study the stability of Deep Q
Learning algorithms by testing our agents on boards where we
have rearranged the location of these special boxes.

I. INTRODUCTION

This project involves the study of the adaptation of Deep Q-
Learning networks in an interchangeable environment. What
happens if we teach a mouse to escape from a cat on a board,
and how does the cat adapt to the modification of the board, by
moving walls or boxes that slow down the agents for example?

This aspect is interesting insofar as Deep Q-Learning,
compared to classical Q-Learning, is supposed to react better
to situations that it has never seen. Thus, we will study the
reaction of two types of agents who discover new situations
while they have been trained on similar but not identical
situations.

The challenges of this project are first to create a modular
environment from scratch with PyGame [6], on which the
players will be able to play with the board as they wish,
and then to succeed in creating two agents who will compete
on this board, and who will be able to progress with the
appropriate methods.

This project is similar to the game ”Frozen-Lake” in that an
agent (the cat) must move to eat the mouse. The uncertainty of
the movements of the agent of ”Frozen-Lake” is replaced by
the uncertainty of the movement of the objective (the mouse)
and it is not possible for the cat to die if it goes on a bad
square. Moreover, we want to train our agents with Deep-Q
Learning compared to the Q-Learning methods usually used
on ”Frozen-Lake” to be able to test our agents on new boards.

So we recreated from scratch a game environment on which
we trained our agents. Since this game is a winning game for
the mouse given the implementation features, we can expect
the mouse agent to constantly beat the cat. This is indeed
what we observe on simple boards, and it remains true despite
a slightly lower win rate on more complex boards. We also
managed to create a cat agent that optimize all its moves on
simple boards as it catches the mouse in a minimum number of
moves when the mouse is immobile. Concerning the stability
of the Deep Q-Learning methods, we draw two conclusions:
on the one hand, training on a complex terrain still leads to a
victory of the cat when we test our agents on simple terrains.

On the other hand, on complex terrain most of the actions
performed by the agents are good, but some observations still
lead to sub-optimal decisions.

If we had more time, we would have tried to model several
agents. For example, start with a single cat and several mice,
and as soon as a mouse is touched it becomes a cat with
it. This would have allowed us to observe possible group
behavior, where several cats would have helped each other to
block a mouse for example. Finally, we could have pushed
the study of stability by performing transfer learning on new
game boards.
All our code can be found here :
https://github.com/ElSacho/World Chase Tag project.git

II. BACKGROUND

Before working on the agents, we explain the environment
we have created. First of all, we create a board, composed of
elements of type ’box’ which correspond to the boxes of our
board. Thus, each square can be initialized with properties
like ’home’ for the mouse, or like a square that slows down
the agents.
Then we have two agents, these two agents can move left,
right, up, down, when possible. The observations of the
two agents are roughly the same: each agent has a ’vision’
parameter. The agent then sees the state of all the squares
included in a square of center ’agent’s position’ and length
’2*vision + 1’. The value of each square is changed if ever a
cat or a mouse is on it, if ever the square is a wall, a speed
bump or a house for the mouse for example. You can get
the state of one agent thanks to the get state() function. The
get reward() functions then differ according to the type of
agent studied. For the cat, the get reward() function returns
100 / self.step * distance min where distance min represents
the distance in norm 1 (the distance used on the board)
between the initialization positions of the cat and the mouse
if the last action of the cat allowed it to eat the mouse, -1
every x time steps, and 0 otherwise.
For the mouse, we tried several types of rewards (the method
can be changed by modifying the string parameter ’method’
in the function get reward(method=’the method used’). The
one that worked best is the one that studies the impact of
the last mouse movement on the position with the cat. If the
mouse has moved away from the cat, it receives a reward of
2, and a reward of -1 otherwise.

So here is an example of the simple game board, with the
two agents Fig. 1:

https://github.com/ElSacho/World_Chase_Tag_project


2

Fig. 1. 5x5 game board without special boxes, cat in green and mouse in
blue

and here is an example of a more complex game board
Fig. 2:

Fig. 2. 5x5 game board with special boxes, the red boxes slow down the
agents, the black boxes are walls and the green boxes are houses for the
mouse

Then comes the global environment of the game. We
initialize the game and its parameters by creating an object of
the class gameEnv. The mouse and the cat are then randomly
placed on the board, and the parameters of the squares initial-
ized (either randomly or manually by the user). The environ-
ment is then provided with functions for each agent: there is no
’get state()’ function, but two functions: ’get state mouse()’
and ’get state cat()’; the same goes for the reset() function,
or step. The environment has been coded to look as much
as possible like a Gym environment, without using the Gym
package. The function reset cat() resets the position of the cat
and the mouse and returns the get state cat(), the function
mouse step() returns 4 elements : next state mouse, reward,
is done, and {} where the dictionary is not used.

III. METHODOLOGY/APPROACH

A. Some tests to test our environment

Once the environment was coded, we implemented rein-
forcement learning methods on our agents. First, we trained
our agents separately, on squares all initialized in the same way
(all the squares of the board are classical): first, we trained the
cat thanks to a cross-entropy method to go and look for the
mouse which remained immobile. The training worked very
well until the cat found the optimal path to fetch the mouse
when the mouse was always initialized at the same location,
but the training did not work as well as soon as the initial
position of the mouse was randomized. So we changed our
learning method. We were interested in Q-learning, but as the
observation space is very large and variable, we preferred to
use Deep Q-Learning [1], which will allow us to add features
more easily on our get state() functions, and to study the
reactions of our agents to new situations. For the rest of the
results, we set the agents’ vision to vision = 3.

B. The implementation of Deep Q Learning

For Deep Q-Learning, we used the method described in the
course [2] which uses a target neural network to evaluate the
Q-Value of an action. We have studied this Reinforcement
Learning method in more detail thanks to the book [5]. We
opted for a neural network structure in three linear activated
layers. We have adapted these methods to train our two agents
simultaneously. At each step of our training loop, the cat gets
its states, selects an action, then updates its neural network’s
weights according to the rewards of this action. Then, the
mouse gets its states, performs an action and updates its neural
network’s weights.

C. First results

We obtain very satisfactory results. On a simple board, after
studying about 200.000 actions (≈ 5min on a CPU), our two
agents are perfectly trained Fig. 3. Once we run our code
to test the agents and display the board, the mouse always
manages to escape the cat. This is not surprising: on a simple
board, it is easy to keep the cat at bay if we move according
to the same parameters as it.

However, we observe several things. The first is that our
”mouse” agent only gets better and better at escaping the cat,
while the cat’s curve is increasing and then decreasing. The
cat learns faster than the mouse that it must be eaten to be
rewarded. But once the mouse begins to understand how to
keep the cat at bay, it progresses very quickly to the point
where the cat can no longer catch the mouse as easily as it
did at first. Since there are winning strategies for the mouse,
once the mouse starts using them, the cat doesn’t progress.

D. Adaptation of some hyperparameters

To obtain such results, we essentially worked on the opti-
mization of the epsilon-Greedy search. To do so, we used a ϵ
parameter, which corresponds to the probability of performing
a random action at each step. We chose to start at 1, so that
all the actions are randomly realized at the beginning of the



3

Fig. 3. Mean of the last 100 rewards for the cat and the mouse in a 5x5
game board without boxes

learning process and to mix the search for optimal actions,
and to end at 0.03 to have about 3% of the actions randomly
realized in steady state, following the structure of [5]. The
parameter that had the most impact was the number of steps
needed to go from a ϵ = 1 to a ϵ = 0.03. We started with
50,000 steps, but the results were not satisfactory enough as
the agents were too quickly stuck in local maximum states
without finding really optimal strategies. For a number of
steps equal to 300.000, the learning was very long with many
small cycles without improvements until the value of ϵ was
lower. We agreed that the optimal number of steps was around
150.000 steps.

E. The choice of a reward for the mouse

Let’s discuss a little about the choice of the reward used
for the mouse. The method used for the reward of the
cat is modifiable by changing the parameter ”method” of
the function ”get reward” in the file ”mouseState.py”. As a
reminder, the method finally used is the one which rewards
positively the mouse when it succeeds in moving away the
cat, and negatively otherwise. The advantages of this method
are that the mouse understands very quickly that it must
move away from the cat to win. However, this reward has
several disadvantages. First of all, the mouse regularly finds
itself in situations where each of its actions will be rewarded
negatively: when the mouse is in a corner for example. At that
moment, it is very difficult for the mouse to choose an optimal
action. Also, to get as far away from the cat as possible, the
mouse tends to escape into the corners. With this method,
the mouse moves away from the cat rather than avoiding it.
Finally, with this method, the addition of certain squares such
as the ”house” squares for the mouse will not be used properly.
If the mouse stays on a house square it will not be eaten, but
the cat will be able to get very close to the mouse, so the
mouse will not learn to use the house.

However, despite these disadvantages, this method works.
The mouse manages to escape the cat. The problem in the
corners is mitigated by the long-term reward, which encour-
ages negative reward actions if the final reward is higher. The

importance of the final reward is given by the γ parameter
which we set to 0.99 to favor long term rewards. Indeed, we
did not want to set this parameter to 1, taking into account the
infinite loops in which the agents can find themselves, but we
still wanted to privilege the long-term reward.

We have also tried other reward methods. The most inter-
esting one seems to be the method that rewards the mouse
with 1 at each step, as soon as it has survived a minimal
number of times. This minimum time is set by the initial
positions of the mouse and the cat, more precisely, as soon
as the cat has moved more times than the minimum number
of movements needed for the cat to catch the mouse under
the initial conditions, the mouse is rewarded. The advantage
of delaying the reward is that the cat and the mouse are
not abnormally rewarded in situations where the cat and the
mouse would have very different initial positions. However,
this method does not work directly: when the cat does not yet
know how to play, the mouse is rewarded a lot, not because
it avoids the cat well, but because the cat cannot catch it. To
solve this problem, we coded in the file ”dqn with simple-

rewards.py” the fact that the mouse starts to progress only
when the cat has finished its initial learning. The results
obtained are however very unsatisfactory: at the end of its
learning, the cat catches the mouse by constantly making the
shortest path, but when we start training the mouse, this one
does not manage to delay its death of more than 10 movements
Fig. 4.

Fig. 4. Mean of the last 100 rewards for the cat and the mouse in a 5x5
game board without boxes, with the simple reward described above



4

IV. RESULTS AND DISCUSSION

We first present our results in the case of a simple game
on a 5x5 size board to be able to compare its results to board
perturbations.

In this particular case, we observe that the mouse wins
almost all the time Fig. 5. The cat’s reward (which is the
most easily analyzed) shows that the cat either never catches
the mouse, or more than 25 ∗ distance initiale cat mouse.
Thus, the cat, even if we can consider that its learning is
working (Fig. 4), is not up to the level of a trained mouse.

Fig. 5. Mean of the last 100 rewards for the cat and the mouse in a 5x5
game board without boxes, after the training

Now, let’s look at the results obtained on more complex
trays. After having trained our agents on a 5x5 board identical
to the one presented above, we obtain very different results
concerning the performances of the different agents. Indeed,
we observe empirically that the mouse, being slowed down
by the red squares, takes more time to leave them, which
favors the cat which thus wins more often than it. Compared
to a simple board, the cat performs only twice the number of
minimal actions required by the initial conditions to catch the
mouse.

Fig. 6. Mean of the last 100 rewards for the cat and the mouse in a 5x5
game board with all types of boxes, after the training on this game board

Finally, let’s observe how our agents react to changes
in the plateau, and respond to situations they have never
observed before Fig. 7. In this case, we observe a much
higher variance of rewards. The disruption of the set leads to
poor decision making, both by the cat, but also by the mouse
more frequently. However, the use of Deep Q-Learning allows
us to stabilize the rewards expectation of both agents at the
same level as on the tray on which the agents were trained.
The implications of these results show that Deep Q-Learning
allows an adaptation of the agents’ reactions to completely
new situations that remain on average faithful to the actions
that would have been taken by the agent if it had been trained
to react to this type of situation.

Fig. 7. Mean of the last 100 rewards for the cat and the mouse in a 5x5 game
board with all types of boxes, after the training on an other game board

What happens if we play these agents on the classic 5x5
size board, without adding any special squares? We observe
that the cat has much more difficulty in catching the mouse
than before Fig. 8. The mouse manages to increase its reward
considerably. This is due to the fact that the speed bumps also
slow down the mouse’s reward accumulation. Empirically, we
observe that compared to the use of the agents on another
board similar to the one in the training Fig.7, where the
mouse was always caught by the cat because of the slowing
squares, the mouse manages to escape from the cat most of
the time (approximately 55% of the time), but that some cases
related to the randomness of the initial positions lead to the
cat catching the mouse directly. The implications of these
results are multiple. On the one hand, this result shows that our
”mouse” agent, despite its defeat on complex game boards, has
still learned to play. This result also demonstrates the impact
of the speed bumps on the cat’s performance, and shows that
these bumps alone are the cause of the cat’s performance loss.
Finally, we can conclude that the use of Deep Q-Learning
allowed our agents to adapt more easily to new situations.

Finally, we wish to demonstrate the potential uses of special
boxes to study the behavior of our agents. For this purpose, we
create a training game board with walls and a hole in the center
of it, Fig. 9. Training on this board is similar to training on a
simple board. This means that the cat is able to find circuits
that allow it to avoid the cat as much as possible. However,



5

Fig. 8. Mean of the last 100 rewards for the cat and the mouse in a 5x5
game board without special boxes, after the training on an 5x5 game board
with all special boxes

in this configuration, the cat and the mouse are regularly less
than a square apart, which limits the mouse’s reward. In this
configuration, we are at about 47% of the mouse’s victory
after training, which is relatively balanced.

Fig. 9. 5x5 game board with walls

Finally, we wish to analyze the reactions of our agents to
an increase in the size of the board. So we keep the idea of
a wall with a hole, but on a 7x7 board according to which
the agents have a field of view of 4 squares, but then the cat
gains 76 times, because as soon as the cat’s initial positions do
not allow it to see where the mouse is, the cat and the mouse
enter an infinite loop of series of movements. We could add
parameters, such as the difference in positions between the cat
and the mouse to alleviate this problem, but we preferred to
keep our environment as it is, to favor and simplify the addition
of multiple cats and multiple mice in a future improvement of
our environment.

V. CONCLUSIONS

Thus, this study allowed us to create a new environment to
be able to face several neural networks. We focused our study

Fig. 10. Mean of the last 100 rewards for the cat and the mouse in the game
board in Fig. 9, during the training

on the use of Deep Q-Learning to solve some of the problems
of this environment, and then to demonstrate that Deep Q-
Learning can anticipate actions in situations never encountered
by an agent. We could also use this environment to face several
Reinforcement Learning methods in order to compare them, or
to observe the behavioral reactions of some agents in specific
situations. More broadly, it is possible to use this environment
to add agents, and observe crowd behavior when a hostile
agent arrives in a room for example.

REFERENCES

[1] Sutton and Barto. Reinforcement Learning, MIT Press, 2020.
[2] Read. Lecture VI - Reinforcement Learning III. In INF581 Advanced

Machine Learning and Autonomous Agents, 2022.
[3] Gupta, Anmol and Roy, Partha Pratim and Dutt, Varun - Evaluation

of Instance-Based Learning and Q-Learning Algorithms in Dynamic
Environments - 2021

[4] M. Lapan. Packt Publishing - Deep Reinforcement Learning Hands-On -
Chapter 4 - 2018

[5] M. Lapan. Packt Publishing - Deep Reinforcement Learning Hands-On -
Chapter 6 - 2018

[6] How To Create Your Own Reinforcement Learn-
ing Environments, Machine Learning with Phil,
https://www.youtube.com/watch?v=w1jd0Dpbc2o


	Introduction
	Background
	Methodology/Approach 
	Some tests to test our environment
	The implementation of Deep Q Learning
	First results
	Adaptation of some hyperparameters
	The choice of a reward for the mouse

	Results and Discussion
	Conclusions
	References

