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Abstract
Traditional graph analysis methods predominantly focus on node
degree to infer graph structure, typically grouping nodes into classes
based on high interaction rates within each class. However, this ap-
proach often fail to capture the underlying structure of a graph. In
this report, we delve into a mixture model that shifts the focus from
nodes to edges, thereby offering a more nuanced depiction of graph
structure. Our study emphasizes the importance of parameter initial-
ization in the algorithm and demonstrates its application through
the analysis of two real-world datasets. We explore how this edge-
centric approach provides a detailed understanding of graph topology,
capturing complex structures that node-based methods may miss.
However, the effectiveness of this method is somewhat constrained
by the graph’s size. This limitation highlights the need for further
refinement to extend its applicability to larger networks.

1 Introduction
Graph models, particularly mixture models, have predominantly
focused on node analysis. The node distribution in models like the
Erdös-Rényi model (Erdös and Rényi 1959) has been extensively
explored but typically emphasize the degree distribution of nodes,
overlooking the intricate topological structures of graphs. As the
simplest form of the Erdös-Rényi model is denoted as {𝑋𝑖 𝑗 }, 𝑋𝑖 𝑗 ∼
B(𝑝), where (𝑋𝑖 𝑗 ) signifies the presence or absence of an edge
between nodes 𝑖 and 𝑗 , those models often fail to incorporate edge-
specific information, uniformly applying the probability of edge
formation between any two nodes.

Other researches have attempted to introduce underlying struc-
tures, proposing a mixture model for degree distribution. Here,
nodes belong to specific classes with a prior probability, leading to
a more nuanced degree distribution, often hypothesized to follow a
Poisson distribution (Handcock and Jones 2004). It has been claimed
that many networks observed across technological, social, and bi-
ological domains are a scale-free, characterized by a few highly
connected nodes and a majority with minimal connections, and that
the degree distribution in these networks often fits a power-law
pattern. However, (Stumpf et al. 2005) showed that random subnets
sampled from scale-free networks are not themselves scale-free
which contrast the Erdös-Rényi. These issues have thus prompted
the development of novel models more adept at capturing the over-
all structure of a graph.

The focal study of this report is a deep analysis of the paper
(Daudin and Robin. 2008) that introduces a novel approach to graph
analysis. The Erdös-Rényi Mixture for Graphs (ERMG) shifts the fo-
cus from node distribution to edge distribution. This pivotal change
enables the conditioning of an edge’s distribution, belonging to class
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𝑞, based on its connectivity across all graph classes. This model ex-
tends beyond traditional node distribution models, encompassing a
more comprehensive framework. It facilitates the generation of new
data with specific structural properties and supports mathemati-
cal analysis of the generated graph’s attributes. Using the mixture
model, a variational EM (Estimation-Maximization) algorithm is
employed for parameter estimation. This algorithm works even
in large networks (exceeding 1,000 nodes), a unique capability for
inferential method at the time of the paper’s publication, but not
on larger graphs which limits its application.

In this report, wewill delve into themodel’s theoretical underpin-
nings, linking them to concepts covered in the course "Introduction
to Probabilistic Graphical Models and Deep Generative Models" (La-
touche and Mattei 2023). We will implement the model from scratch
and conduct various studies on its estimation aspect. One focus will
be identifying scenarios where the model may not yield satisfactory
results, particularly in terms of convergence. Like a standard EM
algorithm, the initialization of parameters in this model signifi-
cantly influences its performance. We will examine the impact of
different initialization methods on the algorithm’s convergence,
implementing methods from several papers (Fortunato 2010, Scha-
effer 2007). It’s worth noting that while most clustering methods
emphasize groups with high node connectivity, the community
interpretation in our focal study may differ, as many nodes may
be classified in the same cluster even if the do not share any edge,
in a star graph for instance. Lastly, we plan to apply the model to
real-world graphs, with a special emphasis on analyzing a graph
representing the French play "Les Misérables".

2 Methodology
2.1 The model
Continuing from the introduction, let us delves into the funda-
mental assumptions and properties of the Erdös-Rényi Mixture for
Graphs (ERMG). The model is built on two primary assumptions:

• The nodes in the graph are categorized into classes 𝑄 , with
𝛼𝑞 representing the probability that a randomly selected
node belongs to class 𝑞.

• The edge distribution between two nodes is contingent upon
their class membership, expressed as 𝑋𝑖 𝑗 |{𝑖 ∈ 𝑞} ∩ { 𝑗 ∈ 𝑙} =
B(𝜋𝑞𝑙 ). Here, {𝑖 ∈ 𝑞} indicates that node 𝑖 is a member of
class 𝑞.

For analytical convenience, let’s define a set of binary variables
Z, which represent the class distribution of nodes within the graph,
such that 𝑃 (𝑍𝑖𝑞 = 1) = 𝛼𝑞 . It is also important to note that the
matrix 𝜋 should be symmetric and contain values between 0 and 1,
though it need not be stochastic. Additionally, the class probabilities
must sum to one, i.e.,

∑
𝑞 𝛼𝑞 = 1.

These assumptions facilitate the generation of graphs with spe-
cific structures, as will be demonstrated later in Section 3. For
instance, to model a star-shaped graph, we could define two classes:
class 0 representing the ’center’ and class 1 the ’edges’ of the star.
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By setting the diagonal coefficients of matrix 𝜋 to zero, we ensure
connections only between nodes of different classes, mimicking a
star’s structure.

Furthermore, we aim to derive certain properties of graphs char-
acterized by the structure parameters 𝜋 and 𝛼 , which will be crucial
for interpreting the results in Section 3 and in the notebook.

Conditional Distribution of the Degree: As detailed in Ap-
pendix 6, the degree distribution of a node 𝑖 belonging to class 𝑞
can be modeled as

𝑑𝑒𝑔(node𝑖 ) |{𝑖 ∈ 𝑞} ∼ 𝐵(𝑛 − 1, 𝜋𝑞) ≈ 𝑃 (𝜆)
, where this approximation holds true for small 𝑝 and large 𝑛, such
that 𝜆 = (𝑛 − 1)𝑝 . The specific definitions of "small" and "large" in
this context are further explained in Appendix 6.

Clustering Coefficient: The clustering coefficient (Watts and
Strogatz 1998) for a graph generated by the ERMG can be calculated
using the formula:

𝑐 =

∑
𝑞,𝑙,𝑚 𝛼𝑞𝛼𝑙𝛼𝑚𝜋𝑞𝑙𝜋𝑞𝑚𝜋𝑙𝑚∑
𝑞,𝑙,𝑚 𝛼𝑞𝛼𝑙𝛼𝑚𝜋𝑞𝑙𝜋𝑞𝑚

This coefficient provides a measure of the degree to which nodes
in a graph tend to cluster together.

2.2 Estimation
Now that we have a model to generate graph given some parame-
ters, it is natural to look for algorithms to estimate the parameters
for a given graph, namely the latent clustering priors 𝜋 and 𝛼 (recall
that 𝛼𝑞 denotes the probability for a vertex to be in cluster 𝑞, and
𝜋𝑞𝑙 denotes the probability for a vertex in cluster 𝑞 to be connected
to a vertex in cluster 𝑙 .) Let’s first compute the log-likelihood of the
problem:

2.2.1 Log-likelihood. DenotingX the random variables describ-
ing the edges’ distribution of the graph, andZ the vertices’ distri-
bution into clusters, let’s write the log-likelihood:

log L(X,Z) = logL(Z) + log L(X|Z)
Let’s break down this expression:

logL(Z) = log(
𝑛∏
𝑖=1

𝑄∏
𝑞=1

p(𝑍𝑖𝑞))

=

𝑛∑︁
𝑖=1

𝑄∑︁
𝑞=1

𝑍𝑖𝑞 log(𝛼𝑞)

logL(X|Z) = log
𝑛∏
𝑖=1

𝑛∏
𝑗<𝑖
𝑗≠𝑖

𝑄∏
𝑞=1

𝑄∏
ℓ=1

(
𝜋
𝑋𝑖 𝑗

𝑞𝑙
· (1 − 𝜋𝑞𝑙 ) (1−𝑋𝑖 𝑗 )

)𝑍𝑖𝑞𝑍 𝑗𝑙

logL(X|Z) = 1
2

∑︁
𝑖≠𝑗

∑︁
𝑞,ℓ

𝑍𝑖𝑞𝑍 𝑗ℓ log𝑏 (𝑋𝑖 𝑗 ;𝜋𝑞ℓ )

and 𝑏 (𝑥 ;𝜋) = 𝜋𝑥 (1 − 𝜋)1−𝑥 .
Because of the latent variablesZ, this expression does not seem

to be simplified easily. Then, it seems logical to look for a conditional
expectation of the log-likelihood such that:

Q(X) = E [logL(X,Z)|X]

=
∑︁
𝑖

∑︁
𝑞

𝜏𝑖𝑞 log(𝛼𝑞) +
1
2

∑︁
𝑖≠𝑗

∑︁
𝑞,𝑙

𝜃𝑖, 𝑗,𝑞,𝑙 log(𝑏 (𝑋𝑖 𝑗 , 𝜋𝑞𝑙 ))

with 𝜃𝑖 𝑗𝑞𝑙 = E[𝑍𝑖𝑞𝑍 𝑗𝑙 |X] and 𝜏𝑖𝑞 = P(𝑍𝑖𝑞 = 1|X) being the poste-
rior distribution.

2.2.2 Variational approach. Intuitively, we have here a hier-
archical model, with latent variables describing the belonging to
classes, every class defining a specific distribution. Naturally, that
leads us to consider a expectation-maximisation (EM) algorithm
to estimate the parameters. Nevertheless, the expectation step re-
quires to compute the posterior distribution (to optimize the ELBO)
which is not possible here, according the the following example.

𝑖

𝑗𝑘

Π =

(
1 0
0 𝑎

)

On this graph, the posterior probability of 𝑖 belonging to class 1
(P(𝑍𝑖1 = 1) depends on thewhole set of edgesX, and not only on the
neighbourhood of 𝑖 . Actually, as no connection is possible between
two vertices that are not in the same class, 𝑖, 𝑗 and 𝑘 are in the same
class. But in that case, whether 𝑖 belongs to cluster 1 or cluster
2 depends on the value of the edge 𝑋 𝑗𝑘 : if 𝑋 𝑗𝑘 = 0, then P(𝑍𝑖1 =

1|X𝑖 ,X𝑗𝑘 ) = 0, and if𝑋 𝑗𝑘 = 1, then P(𝑍𝑖1 = 1|X𝑖 ,X𝑗𝑘 ) > 0. So, from
a more general point of view, P(𝑍𝑖𝑞 = 1|X𝑖 ) ≠ P(𝑍𝑖𝑞 = 1|X), and
the posterior distribution cannot be computed easily. In comparison,
in classical EM, the posterior distribution can be computed using a
neighbourhood for every data, making it more tractable. Therefore,
we need to use a variational approach to optimize the classical EM
lower bound of logL(X), called the ELBO.

J (𝑅X) = logL(X) − KL [𝑅X (·), P(·|X)]
where KL [𝑅X (·), P(·|X)] is the Kullback-Leibler divergence.
In a classical EM, the maximization step consists of setting the KL-
divergence to 0, setting 𝑅X = P(·|X). As mentionned above in our
case, that is not possible because of the complete non-tractability
of the posterior in that case. That is where the variational approach
of EM comes in: we will look for the best 𝑅X in terms of Kullback-
Leibler divergence minimization, restricted to a certain class of
functions. This variational strategy has been described in (Jordan
et al. 1999) and (Jaakola 2000), and alternates the maximization of
J (𝑅X) (i) with respect to 𝑅X and (ii) with respect to parameters 𝛼
and 𝜋 . Wewill assume that the approximate conditional distribution
𝑅X takes the following form:

𝑅X (Z) =
∏
𝑖

ℎ(Z𝑖 ;𝜏𝑖 )

where 𝜏𝑖=(𝜏𝑖1, . . . , 𝜏𝑖𝑄 ) and ℎ(·;𝜏) denotes the multinomial distribu-
tion with parameter 𝜏 . 𝜏𝑖𝑞 can be interpreted as an approximation
of the posterior distribution P(𝑍𝑖𝑞 = 1). Here are a few insights
of why we make the assumption that the approximal conditional
distribution has the following form:

• Independence Assumption: The variational distribution
𝑅X (Z) is assumed to factorize into a product of indepen-
dent distributions for each latent variable. That is, if 𝑍 =

{𝑍1, 𝑍2, . . . , 𝑍𝑛}, then 𝑅X (Z) = ∏𝑛
𝑖=1 ℎ(Z𝑖 ;𝜏𝑖 ), where each

term is independent.
• Multinomial Distribution in Mixture Models: Each fac-
tor in the product form of the variational distribution often
takes the form of a multinomial distribution. This reflects
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the scenario where each node in the graph is assumed to
belong to one of several possible categories or clusters, with
the multinomial distribution capturing the probabilities of
these cluster assignments for each node.

• Computational-accuracy Trade-off: The product form
represents a balance between computational tractability and
the accuracy of the inference. It is chosen in our scenarios
because exact inference is infeasible, accepting some loss of
accuracy for practical computation.

Now, let’s look for the actual variational EM algorithm and how
updates at each step are made. As in a classical EM, the algorithm
breaks down into two steps, an estimation step and a maximization
step:

(𝛼 (ℎ+1) , 𝜋 (ℎ+1) ) = arg max
(𝛼,𝜋 )

J
(
𝑅X ; {𝜏 (ℎ)𝑖

}, 𝛼, 𝜋
)
,

{𝜏 (ℎ+1)
𝑖

} = argmax
{𝜏𝑖 }

J
(
𝑅X ; {𝜏𝑖 }, 𝛼 (ℎ+1) , 𝜋 (ℎ+1)

)
.

Let’s now see and understand how these updates are made:

Estimation step: Given the variational parameters {𝜏𝑖 }, the
values of parameters 𝛼 and 𝜋 that maximize J (𝑅X) are

𝛼𝑞 =
1
𝑛

∑︁
𝑖

𝜏𝑖𝑞, 𝜋𝑞𝑙 =

∑
𝑖≠𝑗 𝜏𝑖𝑞𝜏 𝑗𝑙𝑋𝑖 𝑗∑
𝑖≠𝑗 𝜏𝑖𝑞𝜏 𝑗𝑙

.

Proof: Being a probability law, we must have
∑
𝑞 𝛼𝑞 = 1. So we

have to optimize a constrained convex optimization problem. The
Lagrangian writes

𝐿(𝑅X, 𝛼, 𝜆) = J (𝑅X) + 𝜆

(∑︁
𝑞

𝛼𝑞 − 1

)
Using the expression of 𝐽 (𝑅X , the derivative of 𝐽 (𝑅X with respect
to 𝛼𝑞 is straightforward and leads to

𝜕𝐽 (𝑅X)
𝜕𝛼𝑞

=
1
𝛼𝑞

∑︁
𝑖

𝜏𝑖𝑞

Plugging it into the derivative of the Lagrangian, the rest follows
immediately.
To derive the update of 𝜋 , let’s remark that

𝜕 log𝑏 (𝑥, 𝜋)
𝜕𝜋

=
𝑥

𝜋
+ (1 − 𝑥)

𝜋

and plug it into the derivative 𝜕𝐽 (𝑅X )
𝜕𝜋𝑞𝑙

and then in the derivative of
the Lagrangian.

Maximization step: Given parameters 𝛼 and 𝜋 , the optimal
variational parameters {𝜏𝑖 } = argmax𝜏𝑖 J (𝑅X) satisfy the follow-
ing fix point relation:

𝜏𝑖𝑞 ∝ 𝛼𝑞

∏
𝑗≠𝑖

∏
ℓ

𝑏 (𝑋𝑖 𝑗 ;𝜋𝑞𝑙 )𝜏 𝑗ℓ .

Proof: Based on the definition of the Kullback-Leibler divergence,
we first rewrite 𝐽 (𝑅X) as

𝐽 (𝑅X) =
∑︁
𝑧

𝑅X (𝑧) logP{Z|X} −
∑︁
𝑧

𝑅X (Z) log𝑅X (Z)

=
∑︁
𝑖

∑︁
𝑞

𝜏𝑖𝑞 log𝛼𝑞

+ 1
2

∑︁
𝑖≠𝑗

∑︁
𝑞,ℓ

𝜏𝑖𝑞𝜏 𝑗ℓ log𝑏 (𝑋𝑖 𝑗 ;𝜏𝑞ℓ )

−
∑︁
𝑖

∑︁
𝑞

𝜏𝑖𝑞 log𝜏𝑖𝑞 .

Wenowhave tomaximize 𝐽 (𝑅X)with respect to the 𝜏𝑖𝑞 ’s, subject
to

∑
𝑞 𝜏𝑖𝑞 = 1, for all 𝑖 , i.e., to maximize 𝐽 (𝑅X) +

∑
𝑖 𝜆𝑖 (

∑
𝑞 𝜏𝑖𝑞 − 1)

where 𝜆𝑖 is the Lagrange multiplier. The derivative with respect to
𝜏𝑖𝑞 is

log𝛼𝑞 +
∑︁
𝑗≠𝑖

∑︁
ℓ

𝜏 𝑗 ℓ log𝑏 (𝑋𝑖 𝑗 ;𝜏𝑞ℓ ) − log𝜏𝑖𝑞 + 1 + 𝜆𝑖 .

This derivative is null iff 𝜏𝑖𝑞 ’s satisfy the relation given in the
proposition, exp(1 + 𝜆𝑖 ) being the normalizing constant.
At the end of the day, these two updates rules enable us to com-
pute a sequence of {{𝜏 (ℎ)

𝑖
}, 𝛼 (ℎ) , 𝜋 (ℎ) } such that, according to the

estimation and the maximization steps:

J
(
𝑅X ; {𝜏 (ℎ+1)𝑖

}, 𝛼 (ℎ+1) , 𝜋 (ℎ+1)
)
≥ J

(
𝑅X ; {𝜏 (ℎ)𝑖

}, 𝛼 (ℎ) , 𝜋 (ℎ)
)
.

We perform these updates over a fixed number of iterations, lead-
ing to the final convergence of the parameters. We also want to
highlight that this inequality may not be true if the fixed update of
the 𝜏 using the fixed point function did not converge.

2.2.3 Choice of the number of clusters. In the approach pre-
viously described, we have always worked with a fixed number of
classes 𝑄 . However, this number is of great semantic importance,
and its value should not be chosen randomly. In this report, we use
a Bayesian model selection criterion, the Integrated Classification
Likelihood (ICL) developed by (Christophe Biernacki 1998). For a
model𝑚𝑄 with 𝑄 classes, the ICL criterion is

ICL(𝑚𝑄 ) = max𝜃 logL(X, Z̃|𝜃,𝑚𝑄 )

−1
2
𝑄 (𝑄 + 1)

2
log

𝑛(𝑛 − 1)
2

− 𝑄 − 1
2

log(𝑛)
where 𝜃 = (𝛼, 𝜋) is the entire set of the mixture parameters. Intu-
itively, this criterion penalize a model that overfits the data by a
penalty growing in the number of classes.
However, this criterion requires to know the maximum of the log-
likelihoodwith respect to the set of parameters 𝜃 , and the goal of the
variational EM algorithm is actually to maximize this log-likelihood.
Therefore, it is mandatory to perform a full EM computation for
every number of clusters that we want to test, which can in some
cases be unefficient, especially for very large graphs for which EM
computation is very long.

2.3 Algorithm Performance and Limitations
This section addresses the scenarios where the proposed algorithm
might encounter difficulties. Our focus will be on specific cases
of the fixed-point function and the necessary minor adjustments
for improved algorithmic stability. In the ensuing discussion, 𝑖, 𝑗
denote nodes, while 𝑞, 𝑙 represent clusters.
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Vanishing Updates: The estimated values 𝜏𝑖𝑞 are updated using
a multiplicative function, which can lead to complications under
certain conditions. A key issue arises when one element in the
update multiplication approaches zero, leading to the updated 𝜏𝑖𝑞
becoming a zero value. Specifically, this occurs when𝑏 (𝑋𝑖 𝑗𝜋𝑞𝑙 )𝜏 𝑗ℓ =
0, which is true when 𝜋𝑞𝑙 = 1 or 𝜋𝑞𝑙 = 0.

1. Case of 𝜋𝑞𝑙 = 1: In scenarios where the true value of the 𝜋
matrix is one, the algorithm may fail to converge. For the
update not to vanish, it is necessary that either 𝑋𝑖 𝑗 = 1 or
𝜏 𝑗𝑙 = 0. The first condition is likely for edges between classes
𝑞 and 𝑙 that are fully connected (𝜋𝑞𝑙 = 1). However, when
the nodes do not both belong to these classes, 𝑏 (𝑋𝑖 𝑗𝜋𝑞𝑙 )
might be zero, necessitating 𝜏 𝑗 ℓ = 0. This requirement can
be challenging since 𝜏 𝑗 ℓ values are continuously updated
and the converge may not be finished for those values.

2. Case of 𝜋𝑞𝑙 = 0: Similarly, when 𝜏 𝑗 ℓ has not fully converged,
𝑏 (𝑋𝑖 𝑗𝜋𝑞𝑙 )𝜏 𝑗ℓ = 0 might occur.

To address these issues, a small 𝜖 value was introduced to prevent
vanishing updates: 𝑏 (𝑥 ;𝜋) = (𝜋 + 𝜖)𝑥 (1 − 𝜋 + 𝜖)1−𝑥 . This modifi-
cation enables the algorithm to handle situations where 𝜋𝑞𝑙 = 1 or
𝜋𝑞𝑙 = 0, a desirable feature for robustness.

Estimation of 𝜋𝑞𝑙 = 0: Another challenge arises in a particular
setup when 𝜋𝑞𝑙 = 0. In this case, the condition

∑
𝑖≠𝑗 𝜏𝑖𝑞𝜏 𝑗𝑙𝑋𝑖 𝑗 = 0

must be met. However, as 𝜏𝑖𝑞𝜏 𝑗𝑙 are approximations and not exact
zeros, even when 𝑋𝑖 𝑗 = 1, the numerator becomes minuscule but
non-zero. If we further add the assumption that 𝜏𝑖𝑞𝜏 𝑗𝑙 = 0 when
𝑋𝑖 𝑗 = 0, that is to say that neither that when there is no edge
between two nodes, then {𝑖 ∉ 𝑞} or { 𝑗 ∉ 𝑙} (this situation typically
arises in star graphs); then the denominator, being equal to the
numerator, also approaches zero, leading to an erroneous estimation
of 𝜋𝑞𝑙 as 1 instead of 0. To mitigate this, we enforce 𝜋𝑞𝑙 = 0 when
the numerator is smaller than a predefined 𝜖 threshold.

2.4 Different initialization methods
Intuitively in the case of the variational approach for mixture mod-
els, the initialization of the approximate posterior probabilities of
belonging to a class 𝜏𝑖𝑞 plays a crucial role. In fact, the structure and
connectivity patterns play a significant role. If the initial approxi-
mate posterior probabilities do not capture the inherent modularity
or community structure of the graph, the optimization steps might
reinforce incorrect assignments, leading to a clustering that does
not accurately reflect the true community structure. The approxi-
mate posteriors guide the early iterations of the algorithm, affecting
both the update of the cluster parameters and the re-estimation of
the probabilities themselves in a feedback loop. In this report, we
will compare at two different initialization methods, in addition to
the random one, and evaluate the different performances of these
initializations.

2.4.1 Spectral clustering: Spectral clustering (White and Smyth
2005) is an algorithm that leverages the eigenvalues and eigen-
vectors of a graph’s Laplacian matrix to identify clusters within
the graph. The algorithm begins by constructing the adjacency
matrix 𝐴 of the graph 𝐺 = (𝑉 , 𝐸). It then computes the Laplacian
matrix 𝐿𝑟𝑤 = 𝐼 −𝐷−1𝐴, where 𝐼 is the identity matrix and 𝐷 is the
diagonal degree matrix of 𝐺 , indicating the number of neighbors
for each node. The next step involves eigenvalue decomposition

of 𝐿𝑟𝑤 , selecting the eigenvectors corresponding to the 𝑑 small-
est eigenvalues. These eigenvectors are assembled into a matrix
𝑈 ∈ R𝑚×𝑑 . Each row of 𝑈 , denoted by 𝑦𝑖 , represents a node in a
new 𝑑-dimensional space where traditional clustering techniques,
such as 𝑘-means, can be applied to partition the nodes into 𝑘 clus-
ters𝐶1,𝐶2, . . . ,𝐶𝑘 . This method effectively transforms the problem
of graph clustering into a geometric one, where spatial closeness in
the new eigenvector space implies membership in the same cluster.

2.4.2 Modularity clustering: The idea of the modularity clus-
tering (Jierui Xie 2013) is to iteratively try different clustering pos-
sibilities, and to provide a measurement capable of compute how
good the clustering is. Modularity is one of the most popular and
widely used metrics to evaluate the quality of a network’s partition
into communities. Considering a specific partition of the network
into clusters, modularity measures the number of edges that lie
within a cluster compared to the expected number of edges of a null
graph (or configuration model), i.e., a random graph with the same
degree distribution. In other words, the measure of modularity is
built upon the idea that random graphs are not expected to present
inherent community structure; thus, comparing the observed den-
sity of a subgraph with the expected density of the same subgraph
in case where edges are placed randomly, leads to a community
evaluation metric. Modularity is given by the following formula:

𝑄 =

𝑛𝑐∑︁
[ 𝑙𝑐
𝑚

− ( 𝑑𝑐
2𝑚

)2]

where 𝑛𝑐 is the number of partitions in the specific case that we
try , 𝑚 is the number of edges of the graph, 𝑙𝑐 is the number of
edges that lie in the community 𝑐 and 𝑑𝑐 is the sum of the degrees
of the nodes in the community 𝑐 . Modularity takes value in [−1, 1],
higher value indicating a higher community structure.
The idea of the modularity clustering is to start with a graph where
each node defines a community, and to progressively associate com-
munities that are the most likely to be in the same cluster, according
to the maximization of the modularity.
In community detection within graphs, the algorithm focuses on
merging only those communities that are linked by edges, as uncon-
nected community pairs do not contribute to an increase in the mod-
ularity measure𝑄 . The modularity change Δ𝑄 due to a merge is ex-

pressed as Δ𝑄 = 1
𝑚 𝑙𝑐1∪𝑐2− 1

𝑚 (𝑙𝑐1+𝑙𝑐2 )+
(𝑑𝑐1+𝑑𝑐2 )

2𝑚
2
−( 𝑑𝑐12𝑚 )2−( 𝑑𝑐22𝑚 )2,

which is computationally efficient. Post-merge, the edge matrix up-
dates in𝑂 (𝑛) time. Given that the algorithm conducts at most 𝑛 − 1
merge operations, the total computational complexity amounts to
𝑂 ((𝑚 + 𝑛)𝑛), reducing to 𝑂 (𝑛2) for sparse graphs. The algorithm
also computes the modularity 𝑄 incrementally, thus streamlining
the search for the optimal community structure.

3 Results
3.1 Dataset
For this project, we choose to show our results on two main dataset.
The first one is the coappearance network of characters in the novel
Les Miserables of Victor Hugo. It comprises 77 nodes representing
Les Misérables characters and 254 edges, each edge connecting two
characters that share a common scene in the book (see Appendix
6).

The second one is an X (formerly Twitter) interaction network
for the 117th United States Congress House of Representatives. It
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was constructed by first obtainingmembers’ official Twitter handles.
The Twitter API was then used to obtain all Tweets by members
of Congress between February 9, 2022, and June 9, 2022. Each
nodes represent the account of one member of the Congress, and
it is connected to others when one of the two member replied,
retweeted ou commented one tweet of the other member (Fink et al.
2023). It has has 475 nodes, and 10,222 edges.

The code we used is available on the github repository1 of the
project. We re-coded all the clustering methods as-well as the EM
algorithm from scratch in order to show a deep understanding of
the algorithms. Since we wanted to work with large graphs, we
also propose a PyTorch version of the EM algorithm to leverage
GPU and fasten computation time. Please note that all figures can
be viewed in a larger format in Appendix 6.

3.2 Impact of initialization
This section presents our findings regarding the influence of initial-
izationmethods on the convergence of the algorithm.We conducted
our study in two parts: first, we generated various graphs using
the ERMG model with specific structures to observe how different
initializations affect the algorithm’s convergence based on the true
𝜋 matrix. Subsequently, we applied the same experimental setup to
real-world data, where the true values of 𝜋 are unknown.

3.3 Generated Data Analysis
For graphs generated using the ERMG model, our findings indi-
cate that spectral clustering often yields better performance on
certain graph structures compared to modularity-based methods.
However, random initialization demonstrated significantly superior
performance in specific scenarios. One other particularly noticeable
remark is that modularity and spectral clustering methods, known
for their low variance (tending to provide consistent clustering for
repeated runs on the same data), also offer more stable results than
random for a given graph.

Specifically, in the first scenario, when the diagonal coefficients
of 𝜋 are substantially less than 1, indicating a low likelihood of
connections within the same class, random initialization outper-
formed both spectral clustering and modularity Fig. 1. This could
be attributed to the inherent design of clustering methods, which
typically define communities based on the prevalence of connec-
tions within them. In scenarios where 𝜋 ’s structure is contrary to
this principle, clustering methods may initialize far from the true
class distributions of the model.

(a) ICL
(b) Post-clustering

reordered adjacency matrix

Figure 1. Results for the first scenario

1https://github.com/ElSacho/Mixture4graph

In a second scenario where the diagonal coefficients of 𝜋 are
close to 1, but other coefficients are also high, clustering methods
struggle to accurately identify the true classes. Here too, random
initialization proved more effective on average Fig. 2. This phenom-
enon might be linked to an early convergence to a local optimum
in the likelihood function, especially in graphs with a higher edge
density. These graphs are inherently more complex to analyze, and
starting from a likely solution may lead to converge to local optima.
In this particular example, it is also worth noting that initializing
with the random method converges to the ground truth. However,
the ICL values suggest that 4 may not be the optimal number of
cluster even if it is indeed the number that has been used to gen-
erate the graph. This opens the question on the choice of the ICL
value to determine the number of clusters.

(a) ICL
(b) Post-clustering

reordered adjacency matrix

Figure 2. Results for the second scenario

Conversely, in the third scenario, when the diagonal coefficients
of 𝜋 are near 1, and other coefficients are significantly lower, spec-
tral clustering surpassed random initialization in performance Fig.
3. This outcome aligns with expectations, as such initializations
help the algorithm in rapidly converging to the optimal solution.

(a) ICL
(b) Post-clustering

reordered adjacency matrix

Figure 3. Results for the third scenario

Let us now study the results of the algorithm on real-graph. The
first one we study is the Twitter interactions one. On this particular
dataset, the performance of the random initialization are similar to
the one from the spectral clustering model, where the modularity
seems to perform poorly Fig 14. We also plotted the reordered adja-
cency matrix for 13 clusters. We can clearly observe that the model
highlights some really interesting results, and succeed in regroup-
ing into classes twitter accounts that share the same structure’s
connections with other accounts. Unfortunately, twitter does not
allow to study non-anonymous accounts and we could therefore
not qualitatively interpret those classes segmentations.

https://github.com/ElSacho/Mixture4graph
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(a) ICL
(b) Post-clustering

reordered adjacency matrix

Figure 4. Results on the Twitter interactions graphs

The last real graph we will study is the one of "Les Misérables".
In the method, spectral clustering outperforms all other methods,
and modularity again fails to be the most effective method Fig 5. In
this particular example, where the final structure resembles that
of scenario 3, the random method works less well than the other
two methods, whose initialization is more relevant, as it’s better
adapted to the final result. We propose a deepened analysis of those
results in the next section.

(a) ICL
(b) Post-clustering

reordered adjacency matrix

Figure 5. Results on the Les Miserables coappearance networks

In summary, the selection of the initialization method for the
ERMG model is of paramount importance and largely depends on
the intrinsic configuration of the 𝜋 matrix. This realization is im-
portant for the practical implementation of the model, particularly
in handling a variety of graph structures. Random initialization has
proven effective across numerous scenarios, yet spectral clustering
might surpass its effectiveness when the graph exhibits commu-
nity clustering. However, the modularity method seems to be less
efficient compared to the aforementioned approaches.

3.4 Interpretation of the results from Les Miserables
Intuitively, the mixture model clustering for clusterizing characters
in a novel is relevant, as every character can be defined through
his relationships and his non-relationships with others: while a
simple intra-connectivity algorithm, like spectral clustering, would
only look at connexions between connected characters, the global
connectivity patterns can somehow unveil some information.

The algorithm seems to split the characters into 5 clusters. Let’s
break those clusters down:

• Strong intra-connectivity clusters: we seem to have 3
out of 5 clusters with very high intra-connectivity, and very
low connectivity with other clusters. For example, the first
cluster gathers Gavroche, Enjolras or Courfeyrac, who are
all members of the ABC community, a group of French rev-
olutionners who share the stage during the very specific
part of the Paris’ barricades (to see better the names of the
character, please refer to Appendix 6). The second cluster
gathers Favourite, Dahlia or Zephine, who are old Fantine’s
friends that only appear together to understand Fantine’s
past. So this type of clusters gather characters that appear at
a very specific time of the novel and only interact with each
other, with no other appearance thoughout the timeline.

• Strong intra and extra connectivity clusters: this cluster
gathers the main characters, or the characters of the present
time, that crosses through the different periods of the novel,
and interact with many others. A pretty striking case is
Marius, who is not clustered with the ABC community as he
also shares the stage with Cosette’s world. Other clustering
algorithms would fail to capture this kind of patterns.

• Isolated characters in a cluster: Some clusters can fea-
ture high intra-connectivity with a pretty low average extra-
connectivity, except for some characters. This is the case for
the cluster with Mgr Myriel, who gathers characters that
share a common connexion with Mgr Myriel but with no
other character. Mgr Myriel in turn, has many connexions
with extra-cluster characters. This highlights a very specific
kind of character, who bridges the gap between two parts of
the story. All the characters with this connexions pattern in
this kind of cluster play the same role.

4 Contribution Statement

Task Sacha Alexandre
Report 50% 50%
Model 70% 30%
Application to real graphs 50% 50%
Impact of the initialization 30% 70%

Table 1. Contribution of each member to the project.

5 Conclusion
This report has demonstrated the efficacy of the Erdös-Rényi Mix-
ture for Graphs (ERMG) model in elucidating the underlying struc-
tures of graphs. The transition from a node-based mixture model
to an edge-centric approach has proven pivotal in achieving this
deeper insight. Nonetheless, the model’s scalability to larger graphs
remains a significant challenge. In our experiments, even with
substantial GPU resources, memory constraints were encountered
when analyzing graphs with more than 500 nodes for 20 classes.
Additionally, the computational time can be extensive, especially
when multiple iterations are conducted on the same dataset to
minimize output variance.

It is crucial to recognize that a high likelihood value for the
model does not necessarily equate to a definitive validation of the
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theoretical structure it represents. The applicability and success
of the model are contingent on the assumption that the actual
graph structure can be reasonably approximated by the model’s
framework. This was evident in our attempts to apply the model
to certain graphs, such as the Paris Metro network (6), where the
algorithm failed to yield satisfactory results.

Further refinement is needed in the initialization of the 𝜏 param-
eters within the algorithm. Our findings indicate that traditional
clustering methods do not universally apply to all graph structures.
Surprisingly, a random initialization approach, seemingly subop-
timal, emerged as the most effective strategy in our studies. This
counterintuitive result underscores the complexity and diversity of
graph structures and the need for flexible initialization strategies.

Finally, as highlighted in our analysis of initialization methods,
future research could consider comparing the Integrated Completed
Likelihood (ICL) criterion with other criteria, such as the Bayesian
Information Criterion (BIC) or the Akaike Information Criterion
(AIC). Such comparative studies could provide valuable insights
into the most effective approaches for determining the optimal
number of clusters in complex graph models.
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6 Appendix
6.1 Theoretical proofs
Proposition : Given the label of a vertex, the conditional distribution of the degree of this vertex is Binomial (approximately Poisson):

𝑑𝑒𝑔(node𝑖 ) |{𝑖 ∈ 𝑞} ∼ 𝐵(𝑛 − 1, 𝜋𝑞) ≈ 𝑃 (𝜆𝑞),
where

𝜋𝑞 =
∑︁
ℓ

𝛼ℓ𝜋𝑞ℓ and 𝜆𝑞 = (𝑛 − 1)𝜋𝑞 .

Proof Conditionally to the belonging of vertices to classes, edges connecting vertex 𝑖 belonging to class 𝑞 are independent. The conditional
connection probability is:

𝑃𝑟 {𝑋𝑖 𝑗 = 1|𝑖 ∈ 𝑞} =
∑︁
ℓ

𝑃𝑟 {𝑋𝑖 𝑗 = 1|𝑖 ∈ 𝑞, 𝑗 ∈ ℓ}𝑃𝑟 { 𝑗 ∈ ℓ}

=
∑︁
ℓ

𝛼ℓ𝜋𝑞ℓ = 𝜋𝑞 .

The result second part of the result is based on the following lemma.

Lemma : B(𝑛, 𝑝) ≈ Poisson(𝜆) for 𝑛 large and 𝑝 small, that is when 𝑛 is large and 𝑛𝑝 = 𝜆

Proof :We want to show that as 𝑛 approaches infinity and 𝑛𝑝 approaches a finite constant 𝜆, the binomial distribution B(𝑛, 𝑝) approaches
the Poisson distribution Poisson(𝜆).

Let 𝑋 ∼ B(𝑛, 𝑝). The probability mass function (pmf) of 𝑋 is given by:

𝑃 (𝑋 = 𝑘) =
(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 , 𝑘 = 0, 1, 2, . . . , 𝑛

Now, let’s compute the limit as 𝑛 approaches infinity and 𝑛𝑝 approaches 𝜆. Define 𝜆 = lim𝑛→∞ 𝑛𝑝𝑛 . For simplicity we will write 𝑝 instead
of 𝑝𝑛

lim
𝑛→∞

𝑃 (𝑋 = 𝑘) = lim
𝑛→∞

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘

= lim
𝑛→∞

𝑛!
𝑘!(𝑛 − 𝑘)!𝑝

𝑘 (1 − 𝑝)𝑛−𝑘

= lim
𝑛→∞

𝑛(𝑛 − 1) (𝑛 − 2) · · · (𝑛 − 𝑘 + 1)
𝑘!

𝑝𝑘 (1 − 𝑝)𝑛−𝑘

= lim
𝑛→∞

𝑛𝑘

𝑘!

(
(𝑛 − 1) (𝑛 − 2) · · · (𝑛 − 𝑘 + 1)

𝑛𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘

Now, let’s consider the terms inside the limit:

lim
𝑛→∞

(𝑛 − 1) (𝑛 − 2) · · · (𝑛 − 𝑘 + 1)
𝑛𝑘

= lim
𝑛→∞

𝑛

𝑛
· 𝑛 − 1

𝑛
· 𝑛 − 2

𝑛
· · · 𝑛 − 𝑘 + 1

𝑛

= 1 · 1 · 1 · · · 1
= 1

So, the terms involving (𝑛 − 1) (𝑛 − 2) · · · (𝑛 − 𝑘 + 1)/𝑛𝑘 all converge to 1.
Now, let’s evaluate the limit of the remaining terms:

lim
𝑛→∞

𝑛𝑘

𝑘!
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 =

1
𝑘!

lim
𝑛→∞

(𝑛𝑘 ) · (𝑝𝑘 ) · (1 − 𝑝)𝑛−𝑘

=
1
𝑘!

· 𝜆𝑘 · 𝑒−𝜆 (because lim
𝑛→∞

𝑛𝑝 = 𝜆)

So, we have shown that:

lim
𝑛→∞

𝑃 (𝑋 = 𝑘) = 1
𝑘!

· 𝜆𝑘 · 𝑒−𝜆
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This is the probability mass function of a Poisson distribution with parameter 𝜆. Therefore, as 𝑛 approaches infinity and 𝑛𝑝 approaches 𝜆,
the binomial distribution B(𝑛, 𝑝) approaches the Poisson distribution Poisson(𝜆).

Lemma : For a graph with correspond ERMG prior parameters 𝜋 and 𝛼 , its clustering coefficient is denoted by :

𝑐 =

∑
𝑞,𝑙,𝑚 𝛼𝑞𝛼𝑙𝛼𝑚𝜋𝑞𝑙𝜋𝑞𝑚𝜋𝑙𝑚∑
𝑞,𝑙,𝑚 𝛼𝑞𝛼𝑙𝛼𝑚𝜋𝑞𝑙𝜋𝑞𝑚

Proof : For any triplet (𝑖, 𝑗, 𝑘), we have

Pr{▽} =
∑︁
𝑞,𝑙,𝑚

𝛼𝑞𝛼𝑙𝛼𝑚 Pr{𝑋𝑖 𝑗𝑋 𝑗𝑘𝑋𝑘𝑖 = 1|𝑖 ∈ 𝑞, 𝑗 ∈ 𝑙, 𝑘 ∈𝑚},

=
∑︁
𝑞,𝑙,𝑚

𝛼𝑞𝛼𝑙𝛼𝑚𝜋𝑞𝜋𝑙𝜋𝑚

6.2 Results seen in section 3
We propose to show the results that were previously presented in Results 3 larger for any deeper analysis.

Figure 6. Different methods comparison when two nodes from the same classes are not laikely to be connected
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Figure 7. The generated graph in scenario 1 with the clustering found by the algorithm, and the one created from the results obtained

Figure 8. Different methods comparison when there is many edges
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Figure 9. The generated graph in scenario 2 with the clustering found by the algorithm, and the one created from the results obtained

Figure 10. Different methods comparison when the structure is close to a classic community one
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Figure 11. The generated graph in scenario 3 with the clustering found by the algorithm, and the one created from the results obtained

Figure 12. Different methods comparison for the graph of the Miserables



Project Report: A mixture model for random graphs MVA 2023, December 2023, Paris, FR

(a) ICL
(b) Post-clustering

reordered adjacency matrix

Figure 13. Different methods comparison for the graph of the twitter interactions

(a) ICL
(b) Post-clustering

reordered adjacency matrix

Figure 14. Different methods comparison for the graph of the Paris Metro Stations. This graph is not likely to follow the ERMG model, and
the model failed to propose any relevant structure
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Figure 15. The variational EM finds two clusters for the dolphins’ graphs

Figure 16. The variational EM finds three clusters for the David Copperfield’s graphs

Figure 17. The variational EM finds three clusters for the David Copperfield’s graphs
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