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Abstract
In the field of cheminformatics, accurately matching molecules
with their textual descriptions is a challenging yet essential
task. This project aims to address this challenge by developing
advanced models for molecule retrieval using natural language
queries. We introduce two distinct approaches to tackle this
problem. The first approach employs a class of deep learning
models, which effectively deciphers the complex relationships
between molecular structures and their textual descriptions,
achieving an LRAP score of 0.90. Building on this class of mod-
els, our second approach incorporates boosting strategies to re-
fine the model’s performance further. This method significantly
enhances precision, achieving a LRAP score of approximately
0.9480.

1 Introduction
The intersection of natural language processing (NLP) and
molecular science is a novel area of exploration that presents
unique challenges. This project aims to develop a method for
retrieving molecular structures, represented as graphs, using
natural language queries. The complexity of this task arises
from the fundamental differences in information represen-
tation between textual descriptions and molecular graphs.
To bridge this gap, we employ machine learning techniques,
specifically contrastive learning, (Weng 2021) to co-train a
text encoder and a molecule encoder. This approach enables
the identification of corresponding molecules for given text
queries by aligning similar text-molecule pairs closer in a
shared representation space, despite the absence of direct
textual information about the molecules.
Evaluating our models’ performance through the Label

Ranking Average Precision (LRAP) score allows us to quan-
tify their effectiveness in accurately matching molecules to
text queries. Achieving a high LRAP score is indicative of
a model’s capability to navigate the complex relationship
between the structured, often qualitative knowledge of lan-
guage, and the precise, quantitative properties encoded in
molecular graphs.
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Contrastive Learning is a powerful technique in machine
learning that aims to learn effective representations by con-
trasting similar (positive) and dissimilar (negative) pairs of
data points. At the heart of this approach is the concept
of contrastive loss (Chopra et al. 2005), which encourages
the model to bring representations of similar items closer
together while pushing apart those of dissimilar items. A
specific instantiation of this idea is triplet loss (Schroff et al.
2015), where a model learns from triplets of data points
consisting of an anchor, a positive example similar to the
anchor, and a negative example dissimilar to the anchor.
Another variant, the Lifted Structured Loss (Oh Song et al.
2016), extends this concept by considering the relationships
among all pairs within a batch of data, thereby providing a
more comprehensive learning signal. Boyd’s BYOL (Grill et al.
2020) approach sidesteps the need for contrasting negative
samples by using a dual-network system. This system re-
fines representations through a self-supervised mechanism,
establishing new benchmarks for learning efficiency and
representation quality without traditional negative sample
contrasts.
In this report, we present our work on the Molecule Re-

trieval Project (Michalis Vazirgiannis 2023), where we ex-
plore various facets of contrastive learning.We delve into the
comparative impact of different loss functions, the efficacy of
varied NLP models, and the implementation of contrastive
learning’s key components. Furthermore, we introduce a
strategy inspired by boosting, aimed at refining the model’s
performance. This comprehensive approach underscores our
effort to identify the most effective methodologies for im-
proving the accuracy and efficiency of molecule retrieval.

2 Methodology
2.1 Dataset
Our dataset for the Molecule Retrieval Project comprises a
collection of molecules and their corresponding textual de-
scriptions. The dataset is structured into training, validation,
and test sets, with 26,408 training samples, 3,301 validation
samples, and 3,301 test samples. Additionally, it includes a
token embedding dictionary mapping molecule substruc-
ture tokens to embeddings, and raw graph files detailing
the edgelist and substructure tokens for each molecule. We
generated our graph dataset using those token as provided
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in the baseline, and we used the tokenizer associated to its
corresponding text model to tokenize the text dataset.

2.2 Model
2.2.1 Graph model. The graph model begins with a flex-
ible input layer, designed to accommodate a wide range of
node feature sizes and utilizes a variety of convolutional
techniques for processing molecular graphs. Through empir-
ical investigation, we assessed the effects of different graph
convolution architectures on model performance. Among
the various models evaluated, we included:

• GCNConv (Kipf and Welling 2016) offers a straight-
forward approach to graph convolution, leveraging
the graph structure directly to aggregate neighbor in-
formation.

• SAGEConv (Hamilton et al. 2017) extends this by sam-
pling and aggregating neighbor features, optimizing
computation and memory usage.

• ChebConv (Defferrard et al. 2016) uses Chebyshev
polynomials to capture the graph’s spectral properties,
allowing for a broader capture of graph topology.

• GINConv (Xu et al. 2018) implements amore powerful
form of neighborhood aggregation that can distinguish
between different graph structures more effectively.

• GATConv (Velickovic et al. 2017) introduces atten-
tion mechanisms to graph convolution, enabling the
model to focus on more important parts of the graph
structure.

• TransformerConv (Shi et al. 2020) brings the power
of transformer models to graph data, applying self-
attention mechanisms to graph nodes.

To ensure stability and efficiency in training, the model
employs BatchNorm after each convolutional layer. This
technique normalizes the inputs to each layer, addressing the
potential issue of internal covariate shift by standardizing
the inputs to have zero mean and unit variance, thereby
accelerating the learning process and allowing to use much
higher learning rates (S. Ioffe 2015).

We also build the graph convolutional layers with a resid-
ual structure. The idea behind the residual structure is that
the desired underlying mappingH(𝑥) can also be approxi-
mated as the mapping F (𝑥) := H(𝑥) − 𝑥 . It has empirically
been shown (K. He 2016) that it is easier to optimize the
residual mapping than to optimize the original one as the
learned residual functions have small responses in general.

In our exploration of molecular graph encoding, we experi-
mented with three distinct pooling methods: global add pool,
global max pool, and global mean pool (Nikolentzos and
Vazirgiannis 2023). Global add pool sums up node features,
capturing the overall presence of features within a mole-
cule. Global max pool highlights the most prominent fea-
ture across nodes, emphasizing critical structural elements.

Global mean pool, on the other hand, averages node fea-
tures, providing a balanced representation of the molecule’s
characteristics. Concluding our model architecture, we in-
corporated three Multilayer Perceptron (MLP) layers, further
refining the extracted features into a robust representation
suitable for downstream tasks.

2.2.2 Text Model. In our project, we compared three text
encodermodels for processing scientific descriptions ofmolecules.
SciBERT (Beltagy et al. 2019), though the heaviest, is known
for its superior accuracy in scientific contexts. Distill-Bert
(Sanh et al. 2019) offers a lighter, faster alternative, opti-
mizing resource usage without significantly compromising
performance. ChemBERTa (Chithrananda et al. 2020), stands
out as the most lightweight model we found suitable for our
scientific dataset. Following these models, we implemented
a linear projection into the embedding space, complemented
by layer normalization (Ba et al. 2016), and concluded the
process by scaling the embeddings with a temperature factor
to optimize matching accuracy.

2.3 The choice of the loss
2.3.1 Contrastive Loss. The first loss we used is the con-
trastive loss (Chopra et al. 2005), that was used in the baseline
of the code. This method aims to encode input samples into
embedding vectors, ensuring that samples from the same
class are embedded closely together, while those from dif-
ferent classes are distinctly separated. This is achieved by
minimizing the distance between embeddings of the same
class and maximizing it for those of different classes.

2.3.2 Triplet Loss. Triplet loss (Schroff et al. 2015) is de-
signed to improve the embeddings or representations of data
points by utilizing a trio of data points: a graph embedding
anchor (a reference point), its associated positive text em-
bedding, and a well chosen negative text embedding. The
objective is to arrange the embedding space so that the an-
chor is closer to the positive than to the negative. We related
this loss with the cosine similarity that we will use later to
match graph embeddings to their corresponding text embed-
dings. To do so, we choose the negative text embedding as
being the negative embedding in the batch that maximizes
the cosine similarity with the anchor.

The loss calculation can be summarized with the equation:

Ltriplet (𝑥, 𝑥+, 𝑥−) =
max

(
0, cos(𝑓 (𝑥), 𝑓 (𝑥−)) − cos(𝑓 (𝑥), 𝑓 (𝑥+)) + 𝛿

)
The loss becomes zero when the distance between the anchor
and the positive is less than the distance to the negative by
at least the margin 𝛿 , promoting a well-separated embedding
space. The margin plays a crucial role by enhancing the
separation between dissimilar points, aiding in the model’s
generalization. It also helps control overfitting by preventing
the model from focusing excessively on individual examples.
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However, setting a very largemargin can complicate training,
as satisfying such a constraint may be challenging in complex
data spaces. As it may be complicated to train a model from
scratch only on this loss, we used a loss a mixture of this loss,
and the contrastive one, for small 𝜆:L = Ltriplet+𝜆Lcontrastive

2.3.3 Lifted Structured Loss. The Lifted Structured (Oh Song
et al. 2016) Loss is employed to refine the embeddings of
graphs and text by emphasizing correct pairings within a
margin of separation. This loss function computes pairwise
cosine distances, promoting closer distances for matching
pairs and penalizing similar distances for non-matching pairs.
It adjusts the embedding space to ensure that similar items
are closer together, enforcing a margin of differentiation.
The loss is then normalized by the batch size, ensuring a
consistent scale across different batch sizes. This approach
effectively structures the embedding space, enhancing the
model’s ability to discriminate between matching and non-
matching pairs.

Llifted =
1
2𝑛

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

1𝑦𝑖=𝑦 𝑗(
max

(
0, 𝑑𝑖 𝑗 + 𝛿 − min

𝑘 :𝑦𝑘≠𝑦𝑖
𝑑𝑖𝑘

)2)
2.4 Training loop
2.4.1 Embedding on the same space. We also present
other strategies that we implemented. To ensure coherence
between graph and text encodings and to unify them within
the same embedding space, we pursued two strategies. The
first involved training a discriminator to ascertain if an em-
bedding was derived from text, promoting indistinguishable
encodings from both domains. The second strategy drew in-
spiration from VQ-VAE (Van Den Oord et al. 2017) methods,
quantizing the continuous embeddings into a discrete space,
thereby aligning the graph and text representations on the
same set of features. This strategy allowed to stabilize the
results and improved the scores we got using the contrastive
loss, but was outperformed by the other two losses.

2.4.2 Ensure a large batch size. In contrastive learning,
a large batch size is crucial as it ensures the presence of a
diverse and comprehensive set of negative samples, which
are essential for the model to learn distinctive features. A
broad range of negatives provides the necessary complexity
and challenge, enabling the model to develop robust repre-
sentations that can effectively distinguish between different
examples. Without a sufficiently large batch size, the variety
of negative samples is limited, which can impede the learn-
ing process and the quality of the resulting embeddings. To
accommodate larger batch sizes and enhance computational
efficiency, we used a freezing decay strategy on the layers
of each text model. We begin by using a small batch size
and, after a specified number of epochs, freeze one layer

to reduce GPU memory usage. This reduction in memory
allows us to increase the batch size. We then fine-tuned our
model using a new dataset that represents the text embed-
dings from the text model, thus enabling the exclusive use
of the graph model and conserving computational resources.
This approach is distinct from freezing all layers of the text
model, as it eliminates the need to store the model’s weights
altogether. Such strategies have significantly enhanced our
processing capabilities, in line with our goal of achieving co-
herent and unified embeddings. Additionally, we evaluated
the model’s performance in its float16 version to allow for
an increased batch size; however, this method proved to be
ineffective.

2.5 Boosting strategy
In our efforts to improve the Label Ranking Average Preci-
sion (LRAP) scores, we explored the application of boosting
strategies, drawing upon the collective strengths of multiple
predictors, denoted as ℎ𝑖 . The core idea was to capitalize on
the individual capabilities of each predictor to contribute
positively to the overall LRAP score. Inspired by traditional
boosting techniques, our approach focused on optimizing
the weighted sum of predictors, represented as

LRAP
(∑︁

𝛼𝑖ℎ𝑖 (𝑥)
)
,

with the constraint that 𝛼𝑖 ≥ 0.
In our exploration of strategies for selecting weights, we

coded an AdaBoost optimizer and iterative binary searches.
However, those strategies needed to build a csv file for the
validation dataset, hence limiting the reproductibility of the
experiment, while not providing outstanding results. The
chosen strategy involved setting weights 𝛼𝑖 proportional
to the exponential of each model’s validation LRAP score,
𝛼𝑖 = 𝑒val(LRAP), and the training of models able to catch dif-
ferent structures of the inputs. This approach also prioritizes
models with superior validation performance, thereby en-
hancing the overall predictive accuracy.

To further enhance our model diversity and performance,
we employed a genetic algorithm-inspired approach. This
involved mutating a percentage of the weights in a finely
tuned model and subsequently fine-tuning this new vari-
ant. This method aimed to probe a wider array of model
configurations in search of optimal solutions.

3 Results
In this section, we summarize key findings from over 70
experiments, emphasizing the influence of hyperparameters
and comparing various loss functions to showcase our most
significant results. For detailed information on each specific
parameter contributing to these results, please refer to the
associated configuration files available in our GitHub repos-
itory1. We utilized TensorBoard to analyze the outcomes,

1https://github.com/ElSacho/NLP_Molecule_Retrieval

https://github.com/ElSacho/NLP_Molecule_Retrieval
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ensuring that all presented results can be found within the
corresponding files in the log folder on GitHub.

Our experimentswere primarily conducted over 200 epochs,
utilizing the Adam optimizer (Kingma and Ba 2014) to in-
vestigate the influence of its key parameters on our findings.
For the graph model, we employ three convolutional layers
followed by a single-head GAT layer with a hidden dimen-
sion of 300, and the output is then processed through four
MLP layers, resulting in a final output dimension of 300.
Given the variety of loss functions tested and their differing
values, we found that focusing solely on plots of the losses
did not align with the objectives of our problem. Instead, we
chose to examine the LRAP scores obtained on the validation
dataset. We build our similarity matrix using the cosine sim-
ilarity between the embeddings. While our analysis mainly
fine-tuned the best scores from each architecture, we opted
to present the results prior to fine-tuning. This approach
provides a clearer hierarchy between the models. Generally,
fine-tuning resulted in an approximate 0.02 absolute increase
in the LRAP score on the validation dataset.

3.1 Graphs Model Results
For the convolutional graphs layers evaluated, performance
was relatively consistent across the board, Fig 1 with a slight
preference for the cheb6 architecture, which outperformed
others marginally. The max-pooling strategy outperfomed
the two others Tab 1.

Figure 1. Impact of the convolutional architecture on the
LRAPS on the validation dataset, with a zoom on the last 50
epochs

Model LRAP Score
Add 0.8393
Mean 0.8832
Max 0.8955

Table 1. Performance of the pooling methods

3.2 Text Model Performance

Model LRAP Score Training time
SciBERT 0.8825 ≈ 19h
Distill-Bert 0.8732 ≈ 6h
ChemBERT 0.6103 ≈ 5h
Table 2. Performance of Text Models

Among the text models, SciBERT achieved the highest LRAP
score at 0.8825 Tab 4, closely followed by Distill-Bert with
0.8732. ChemBERT lagged significantly, registering a score
of 0.6103, indicating a substantial performance gap for this
task. However, it’s important to note that SciBERT requires a
longer training time compared to Distill-Bert, which suggests
that the slight improvement in performance comes at the
cost of increased computational resources.

3.3 Impact of the temperature
We found that the parameters does not significantly mod-
ify the results we obtained with our settings. Fixing this
parameter to 0.8 seems to be slightly better Fig 2.

Figure 2. Impact of the temperature parameter on the LRAPS
on the validation dataset, with a zoom on the last 50 epochs

3.4 Loss Function Comparison

Loss Type LRAP Score
Contrastive 0.8521
Triplet 0.8856
Lifted 0.8793

Table 3. Comparison of Loss Functions

The comparison of loss functions revealed that the Triplet
loss yielded the highest LRAP score at 0.8856, narrowly edg-
ing out the Lifted loss at 0.8793 Tab 3. The Contrastive loss
scored 0.8521, positioning it as the least effective of the three
for this particular task.
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Figure 3. Impact of the learning rate on the LRAPS on the
validation dataset, with a zoom on the last 50 epochs

3.5 Optimizer parameters
For the Adam optimizer, adjustments to the learning rate and
betas were explored. No significant changes were observed
with beta1 values ranging between 0.8 and 0.95. However, the
optimal result was obtained with beta1 set to 0.92, achieving
an LRAP score of 0.8834 Fig 3.

3.6 How to aggregate results
Among all the results we proposed, the best LRAP score on
the validation dataset is approximately 0.90. We now show
that summing several csv files can significantly improved the
results. We try to derive a framework to empirically explain
which models are better to be summing together. To do so,
we proposed to show the results we get from aggregating
several models based on the structure of their parameters.
Following all this strategy, we reached a final LRAP score of
approximately 0.9475.
We show that the choice of the model’s parameters does

impact the results. We start by exposing some insight on the
impact of the model’s parameters for the final results. The
first results Tab. 4, leads to several conclusions : the learning
rate with the same parameters does not catch many differ-
ent structure compared to the use of a different convolution
layer that leads to a significantly better results. Indeed, one
can think that the same model with different learning may
converge to the same predictor, whereas different convolu-
tional layers leads to sigificantly different predictions. The
same conclusion can also be made regarding the choice of
the text model: despite a Distill-Bert model proposing lower
results compared to Scibert, when aggregating those two
results it leads to significantly better results.

We can also try to investigate to what extend a fine tuning
(higher margin for the triplet loss, and higher batch size)

Table 4. Impact of the Architecture

Type of Models Text Model LRAP Score # of Files
Learning Rates Distill-Bert 0.9169 6
Learning Rates Scibert 0.9220 6
Learning Rates Both 0.9361 12
GNN Distill-Bert 0.9317 5
GNN Scibert 0.9377 5
GNN Both 0.9398 10

leads to better results Tab 5. Our conclusion is that fine tun-
ing a model significantly improve the embeddings.

Table 5. Impact of the Fine-tuning

Type of Models Text Model LRAP Score # of Files
Before Fine Tuning Scibert 0.9169 3
After Fine Tuning Scibert 0.9265 3

We were also concerned by the impact of bad predictors
on the final boosted one. We show Tab 6 that bad predictors,
when combined with better ones, does not significantly im-
pact the final score.

Table 6. Bad Predictors Do Not Impact the Final Score

Type of Models Text Model LRAP Score # of Files
Best and Worst Scibert 0.9363 6
Best Only Scibert 0.9359 3

We conclude by noting that, surprisingly, neither the choice
of loss function nor the earlier described mutation strategy
significantly enhanced the results Tab 7. Ultimately, our care-
fully selected strategy achieved an LRAP score of 0.9460 on
the validation dataset.

Table 7. Impact of Different Factors on Model Performance

Type of Models Text Model LRAP Score # of Files
Losses Distill-Bert 0.9198 6
Mutation Scibert 0.8872 10
All the files Both 0.9460 58

4 Conclusion and perspective
Our research involved extensive model comparisons, en-
compassing the trial of three distinct loss functions and the
fine-tuning of numerous parameters. After conducting over
a hundred experiments to identify the optimal hyperparam-
eter mix, we established that SciBERT is ideally suited for
this task. However, it’s noteworthy that DistillBert, while
marginally less effective, delivers comparable results in a
significantly reduced timeframe. Our focus was primarily on
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the batch size, a crucial aspect of contrastive learning. Future
research could explore another key element of contrastive
learning : the selection of negative samples. Our current
method utilizes negative sample selection within individual
batches, yet there exists potential for advanced techniques
that could, for example, restructure the dataloader to cluster
similar embeddings, possibly using spectral clustering on
the post-training cosimilarity matrix.
Moreover, the boosting method we developed markedly

enhanced performance, albeit with greater computational
costs. The deployment of over fifty models, each under-
going extensive training and fine-tuning periods, resulted
in substantial energy consumption, raising environmental
concerns. Additionally, the varying performance of models
across different result classes hints at the possibility of spe-
cialized approaches, such as Mixture of Experts, tailoring
models to excel in specific domains.
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